11 research outputs found

    Hierarchical Temporal Memory using Memristor Networks: A Survey

    Full text link
    This paper presents a survey of the currently available hardware designs for implementation of the human cortex inspired algorithm, Hierarchical Temporal Memory (HTM). In this review, we focus on the state of the art advances of memristive HTM implementation and related HTM applications. With the advent of edge computing, HTM can be a potential algorithm to implement on-chip near sensor data processing. The comparison of analog memristive circuit implementations with the digital and mixed-signal solutions are provided. The advantages of memristive HTM over digital implementations against performance metrics such as processing speed, reduced on-chip area and power dissipation are discussed. The limitations and open problems concerning the memristive HTM, such as the design scalability, sneak currents, leakage, parasitic effects, lack of the analog learning circuits implementations and unreliability of the memristive devices integrated with CMOS circuits are also discussed

    Introduction to Memristive HTM Circuits

    Get PDF
    Hierarchical temporal memory (HTM) is a cognitive learning algorithm intended to mimic the working principles of neocortex, part of the human brain said to be responsible for data classification, learning, and making predictions. Based on the combination of various concepts of neuroscience, it has already been shown that the software realization of HTM is effective on different recognition, detection, and prediction making tasks. However, its distinctive features, expressed in terms of hierarchy, modularity, and sparsity, suggest that hardware realization of HTM can be attractive in terms of providing faster processing speed as well as small memory requirements, on-chip area, and total power consumption. Despite there are few works done on hardware realization for HTM, there are promising results which illustrate effectiveness of incorporating an emerging memristor device technology to solve this open-research problem. Hence, this chapter reviews hardware designs for HTM with specific focus on memristive HTM circuits

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Memristor-Based HTM Spatial Pooler with On-Device Learning for Pattern Recognition

    Get PDF
    This article investigates hardware implementation of hierarchical temporal memory (HTM), a brain-inspired machine learning algorithm that mimics the key functions of the neocortex and is applicable to many machine learning tasks. Spatial pooler (SP) is one of the main parts of HTM, designed to learn the spatial information and obtain the sparse distributed representations (SDRs) of input patterns. The other part is temporal memory (TM) which aims to learn the temporal information of inputs. The memristor, which is an appropriate synapse emulator for neuromorphic systems, can be used as the synapse in SP and TM circuits. In this article, a memristor-based SP (MSP) circuit structure is designed to accelerate the execution of the SP algorithm. The presented MSP has properties of modeling both the synaptic permanence and the synaptic connection state within a single synapse, and on-device and parallel learning. Simulation results of statistic metrics and classification tasks on several real-world datasets substantiate the validity of MSP

    Energy Efficient Neocortex-Inspired Systems with On-Device Learning

    Get PDF
    Shifting the compute workloads from cloud toward edge devices can significantly improve the overall latency for inference and learning. On the contrary this paradigm shift exacerbates the resource constraints on the edge devices. Neuromorphic computing architectures, inspired by the neural processes, are natural substrates for edge devices. They offer co-located memory, in-situ training, energy efficiency, high memory density, and compute capacity in a small form factor. Owing to these features, in the recent past, there has been a rapid proliferation of hybrid CMOS/Memristor neuromorphic computing systems. However, most of these systems offer limited plasticity, target either spatial or temporal input streams, and are not demonstrated on large scale heterogeneous tasks. There is a critical knowledge gap in designing scalable neuromorphic systems that can support hybrid plasticity for spatio-temporal input streams on edge devices. This research proposes Pyragrid, a low latency and energy efficient neuromorphic computing system for processing spatio-temporal information natively on the edge. Pyragrid is a full-scale custom hybrid CMOS/Memristor architecture with analog computational modules and an underlying digital communication scheme. Pyragrid is designed for hierarchical temporal memory, a biomimetic sequence memory algorithm inspired by the neocortex. It features a novel synthetic synapses representation that enables dynamic synaptic pathways with reduced memory usage and interconnects. The dynamic growth in the synaptic pathways is emulated in the memristor device physical behavior, while the synaptic modulation is enabled through a custom training scheme optimized for area and power. Pyragrid features data reuse, in-memory computing, and event-driven sparse local computing to reduce data movement by ~44x and maximize system throughput and power efficiency by ~3x and ~161x over custom CMOS digital design. The innate sparsity in Pyragrid results in overall robustness to noise and device failure, particularly when processing visual input and predicting time series sequences. Porting the proposed system on edge devices can enhance their computational capability, response time, and battery life

    Modeling of Coupled Memristive-Based Architectures Applicable to Neural Network Models

    Get PDF
    This chapter explores the dynamic behavior of dual flux coupled memristor circuits in order to explore the uncharted territory of the fundamental theory of memristor circuits. Neuromorphic computing anticipates highly dense systems of memristive networks, and with nanoscale devices within such close proximity to one another, it is anticipated that flux and charge coupling between adjacent memristors will have a bearing upon their operation. Using the constitutive relations of memristors, various cases of flux coupling are mathematically modeled. This involves analyzing two memristors connected in composite, both serially and in parallel in various polarity configurations. The new behavior of two coupled memristors is characterized based on memristive state equations, and memductance variation represented in terms of voltage, current, charge and flux. The rigorous mathematical analysis based on the fundamental circuit equations of ideal memristors affirms the memristor closure theorem, where coupled memristor circuits behave as different types of memristors with higher complexity
    corecore