14,726 research outputs found
Operation of a high purity germanium crystal in liquid argon as a Compton suppressed radiation spectrometer
A high purity germanium crystal was operated in liquid argon as a Compton
suppressed radiation spectrometer. Spectroscopic quality resolution of less
than 1% of the full-width half maximum of full energy deposition peaks was
demonstrated. The construction of the small apparatus used to obtain these
results is reported. The design concept is to use the liquid argon bath to both
cool the germanium crystal to operating temperatures and act as a scintillating
veto. The scintillation light from the liquid argon can veto cosmic-rays,
external primordial radiation, and gamma radiation that does not fully deposit
within the germanium crystal. This technique was investigated for its potential
impact on ultra-low background gamma-ray spectroscopy. This work is based on a
concept initially developed for future germanium-based neutrinoless double-beta
decay experiments.Comment: Paper presented at the SORMA XI Conference, Ann Arbor, MI, May 200
Production and Decay of the Ge73-m Metastable State in a Low-Background Germanium Detector
The metastable states decay with a very characteristic signature
which allow them to be tagged event-by-event. Studies were performed using data
taken with a high-purity germanium detector in a low-background laboratory near
a nuclear power reactor core where \nuebar-flux was . The measured average and equilibrium production rates of
were and ,
respectively. The production channels were studied and identified. By studying
the difference in the production of between the reactor ON and OFF
spectra, the limiting sensitivities at the range of for the cross-sections of neutrino-induced nuclear
transitions were derived. The dominant background are due to -decays of
cosmic-ray induced Ga. The prospects of enhancing the sensitivities at
underground locations are discussed.Comment: 16 pages, 10 figure
Gamma ray spectrometry of LDEF samples at SRL
A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which were reported to collect noticeable Be-7 on their leading surfaces. No significant Be-7 was detected in the samples analyzed
Performance of HPGe Detectors in High Magnetic Fields
A new generation of high-resolution hypernuclear gamma$-spectroscopy
experiments with high-purity germanium detectors (HPGe) are presently designed
at the FINUDA spectrometer at DAPhiNE, the Frascati phi-factory, and at PANDA,
the antiproton proton hadron spectrometer at the future FAIR facility. Both,
the FINUDA and PANDA spectrometers are built around the target region covering
a large solid angle. To maximise the detection efficiency the HPGe detectors
have to be located near the target, and therefore they have to be operated in
strong magnetic fields B ~ 1 T. The performance of HPGe detectors in such an
environment has not been well investigated so far. In the present work VEGA and
EUROBALL Cluster HPGe detectors were tested in the field provided by the ALADiN
magnet at GSI. No significant degradation of the energy resolution was found,
and a change in the rise time distribution of the pulses from preamplifiers was
observed. A correlation between rise time and pulse height was observed and is
used to correct the measured energy, recovering the energy resolution almost
completely. Moreover, no problems in the electronics due to the magnetic field
were observed.Comment: submitted to Nucl. Instrum. Meth. Phys. Res. A, LaTeX, 19 pages, 9
figure
- …
