1,138 research outputs found
Temporal response of nonequilibrium correlated electrons
In this work we examine the time-resolved, instantaneous current response for
the spinless Falicov-Kimball model at half-filling, on both sides of the
Mott-Hubbard metal-insulator transition, driven by a strong electric field pump
pulse. The results are obtained using an exact, nonequilibrium, many-body
impurity solution specifically designed to treat the out-of-equilibrium
evolution of electrons in time-dependent fields. We provide a brief
introduction to the method and its computational details. We find that the
current develops Bloch oscillations, similar to the case of DC driving fields,
with an additional amplitude modulation, characterized by beats and induced by
correlation effects. Correlations primarily manifest themselves through an
overall reduction in magnitude and shift in the onset time of the current
response with increasing interaction strength.Comment: 4 pages, 2 figures; Submitted to the Proceedings of the Conference on
Computational Physics 2009, Taiwa
Introduction to COFFE: The Next-Generation HPCMP CREATE-AV CFD Solver
HPCMP CREATE-AV Conservative Field Finite Element (COFFE) is a modular, extensible, robust numerical solver for the Navier-Stokes equations that invokes modularity and extensibility from its first principles. COFFE implores a flexible, class-based hierarchy that provides a modular approach consisting of discretization, physics, parallelization, and linear algebra components. These components are developed with modern software engineering principles to ensure ease of uptake from a user's or developer's perspective. The Streamwise Upwind/Petrov-Galerkin (SU/PG) method is utilized to discretize the compressible Reynolds-Averaged Navier-Stokes (RANS) equations tightly coupled with a variety of turbulence models. The mathematics and the philosophy of the methodology that makes up COFFE are presented
Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers
For decades, the use of HPC systems was limited to those in the physical
sciences who had mastered their domain in conjunction with a deep understanding
of HPC architectures and algorithms. During these same decades, consumer
computing device advances produced tablets and smartphones that allow millions
of children to interactively develop and share code projects across the globe.
As the HPC community faces the challenges associated with guiding researchers
from disciplines using high productivity interactive tools to effective use of
HPC systems, it seems appropriate to revisit the assumptions surrounding the
necessary skills required for access to large computational systems. For over a
decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high
performance computing by seamlessly integrating familiar high productivity
tools to provide users with an increased number of design turns, rapid
prototyping capability, and faster time to insight. In this paper, we discuss
the lessons learned while supporting interactive, on-demand high performance
computing from the perspectives of the users and the team supporting the users
and the system. Building on these lessons, we present an overview of current
needs and the technical solutions we are building to lower the barrier to entry
for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance
Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in
Frankfurt, German
21st Century Simulation: Exploiting High Performance Computing and Data Analysis
This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded
paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to
overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel
computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in
computing power. This has been characterized as a ten-year lead over the use of single-processor computers.
Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power.
JFCOM's JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The
challenges facing the defense analyst today have grown to include the need to consider operations among non-combatant
populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-combatants,
and to understand non-linear, asymmetric warfare. These requirements stretch both current
computational techniques and data analysis methodologies. In this paper, documented examples and potential
solutions will be advanced. The authors discuss the paths to successful implementation based on their experience.
Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch,
database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses.
The modeling and simulation community has significant potential to provide more opportunities for training and
analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more
realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights,
for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased
understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses.
The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the
beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success
Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces
Using a combination of first-principles theory and experiments, we provide a
quantitative explanation for chemical contributions to surface-enhanced Raman
spectroscopy for a well-studied organic molecule, benzene thiol, chemisorbed on
planar Au(111) surfaces. With density functional theory calculations of the
static Raman tensor, we demonstrate and quantify a strong mode-dependent
modification of benzene thiol Raman spectra by Au substrates. Raman active
modes with the largest enhancements result from stronger contributions from Au
to their electron-vibron coupling, as quantified through a deformation
potential, a well-defined property of each vibrational mode. A straightforward
and general analysis is introduced that allows extraction of chemical
enhancement from experiments for specific vibrational modes; measured values
are in excellent agreement with our calculations.Comment: 5 pages, 4 figures and Supplementary material included as ancillary
fil
Mode Bifurcation and Fold Points of Complex Dispersion Curves for the Metamaterial Goubau Line
In this paper the complex dispersion curves of the four lowest-order
transverse magnetic modes of a dielectric Goubau line () are
compared with those of a dispersive metamaterial Goubau line. The vastly
different dispersion curve structure for the metamaterial Goubau line is
characterized by unusual features such as mode bifurcation, complex fold
points, both proper and improper complex modes, and merging of complex and real
modes
Coupled flight dynamics and CFD - demonstration for helicopters in shipborne environment
The development of high-performance computing and computational fluid dynamics methods have evolved to the point where it is possible to simulate complete helicopter configurations with good accuracy. Computational fluid dynamics methods have also been applied to problems such as rotor/fuselage and main/tail rotor interactions, performance studies in hover and forward flight, rotor design, and so on. The GOAHEAD project is a good example of a coordinated effort to validate computational fluid dynamics for complex helicopter configurations. Nevertheless, current efforts are limited to steady flight and focus mainly on expanding the edges of the flight envelope. The present work tackles the problem of simulating manoeuvring flight in a computational fluid dynamics environment by integrating a moving grid method and the helicopter flight mechanics solver with computational fluid dynamics. After a discussion of previous works carried out on the subject and a description of the methods used, validation of the computational fluid dynamics for ship airwake flow and rotorcraft flight at low advance ratio are presented. Finally, the results obtained for manoeuvring flight cases are presented and discussed
Improving the efficiency of ultracold dipolar molecule formation by first loading onto an optical lattice
Ultracold ground state dipolar 40K-87Rb molecules have recently been produced
in a loose harmonic trap by employing a magnetic field sweep across a Feshbach
resonance followed by stimulated Raman adiabatic passage [K.-K. Ni et al.,
Science 322, 231 (2008)]. The overall experimental efficiency for molecule
formation was around 20%. We show that the efficiency can be increased to
nearly 100% if one first loads the atomic gases into an optical lattice of the
appropriate depth and tunes the interspecies attraction to have exactly one
atom of each species at an occupied lattice site. Our proposed scheme provides
a large enhancement to the dipolar molecule density even at relatively high
temperatures, and avoids three-body recombination loss by preventing lattice
sites from being triply occupied.Comment: (5 pages, 3 pages, submitted to Phys. Rev. Lett.
Resonant Transmission of Electromagnetic Fields through Subwavelength Zero- Slits
We theoretically investigate the transmission of electromagnetic radiation
through a metal plate with a zero- metamaterial slit, where the
permittivity tends towards zero over a given bandwidth. Our analytic results
demonstrate that the transmission coefficient can be substantial for a broad
range of slit geometries, including subwavelength widths that are many
wavelengths long. This novel resonant effect has features quite unlike the
Fabry-P\'{e}rot-like resonances that have been observed in conductors with deep
channels. We further reveal that these high impedance ultranarrow
zero- channels can have significantly {\it greater} transmission
compared to slits with no wave impedance difference across them
- …
