1,488 research outputs found

    Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa3 in the avian embryo

    Get PDF
    We have investigated the pattern and regulation of Hoxa3 expression in the hindbrain and associated neural crest cells in the chick embryo, using whole mount in situ hybridization in conjunction with DiI labeling of neural crest cells and microsurgical manipulations. Hoxa3 is expressed in the neural plate and later in the neural tube with a rostral border of expression corresponding to the boundary between rhombomeres (r) 4 and 5. Initial expression is diffuse and becomes sharp after boundary formation. Hoxa3 exhibits uniform expression within r5 after formation of rhombomeric borders. Cell marking experiments reveal that neural crest cells migrating caudally, but not rostrally, from r5 and caudally from r6 express Hoxa3 in normal embryo. Results from transposition experiments demonstrate that expression of Hoxa3 in r5 neural crest cells is not strictly cell-autonomous. When r5 is transposed with r4 by rostrocaudal rotation of the rhomobomeres, Hoxa3 is expressed in cells migrating lateral to transposed r5 and for a short time, in condensing ganglia, but not by neural crest within the second branchial arch. Since DiI-labeled cells from transposed r5 are present in the second arch, Hoxa3-expressing neural crest cells from r5 appear to down-regulate their Hoxa3 expression in their new environment. In contrast, when r6 is transposed to the position of r4 after boundary formation, Hoxa3 is maintained in both migrating neural crest cells and those positioned within the second branchial arch and associated ganglia. These results suggest that Hoxa3 expression is cell-autonomous in r6 and its associated neural crest. Our results suggest that neural crest cells expressing the same Hox gene are not eqivalent; they respond differently to environmental signals and exhibit distinct degrees of cell autonomy depending upon their rhombomere of origin

    Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes

    Get PDF
    11 pages, 8 figures.-- et al.During anteroposterior patterning of the developing hindbrain, the anterior expression of 3′ Hox genes maps to distinct rhombomeric boundaries and, in many cases, is upregulated in specific segments. Paralogous genes frequently have similar anterior boundaries of expression but it is not known if these are controlled by common mechanisms. The expression of the paralogous Hoxa3 and Hoxb3 genes extends from the posterior spinal cord up to the rhombomere (r) 4/5 boundary and both genes are upregulated specifically in r5. However, in this study, we have found that Hoxa3 expression is also upregulated in r6, showing that there are differences in segmental expression between paralogues. We have used transgenic analysis to investigate the mechanisms underlying the pattern of segmental expression of Hoxa3. We found that the intergenic region between Hoxa3 and Hoxa4 contains several enhancers, which summed together mediate a pattern of expression closely resembling that of the endogenous Hoxa3 gene. One enhancer specifically directs expression in r5 and r6, in a manner that reflects the upregulation of the endogenous gene in these segments. Deletion analysis localized this activity to a 600 bp fragment that was found to contain a single high-affinity binding site for the Maf bZIP protein Krml1, encoded by the kreisler gene. This site is necessary for enhancer activity and when multimerized it is sufficient to direct a kreisler-like pattern in transgenic embryos. Furthermore the r5/r6 enhancer activity is dependent upon endogenous kreisler and is activated by ectopic kreisler expression. This demonstrates that Hoxa3, along with its paralog Hoxb3, is a direct target of kreisler in the mouse hindbrain. Comparisons between the Krml1-binding sites in the Hoxa3 and Hoxb3 enhancers reveal that there are differences in both the number of binding sites and way that kreisler activity is integrated and restricted by these two control regions. Analysis of the individual sites revealed that they have different requirements for mediating r5/r6 and dorsal roof plate expression. Therefore, the restriction of Hoxb3 to r5 and Hoxa3 to r5 and r6, together with expression patterns of Hoxb3 in other vertebrate species suggests that these regulatory elements have a common origin but have later diverged during vertebrate evolution.This work was funded in part by Core MRC Programme support and a EEC Biotechnology Network grant (#BIO2 CT-930060).Peer reviewe

    Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection

    Get PDF
    Computationally retrieving biologically relevant cis-regulatory modules (CRMs) is not straightforward. Because of the large number of candidates and the imperfection of the screening methods, many spurious CRMs are detected that are as high scoring as the biologically true ones. Using ChIP-information allows not only to reduce the regions in which the binding sites of the assayed transcription factor (TF) should be located, but also allows restricting the valid CRMs to those that contain the assayed TF (here referred to as applying CRM detection in a query-based mode). In this study, we show that exploiting ChIP-information in a query-based way makes in silico CRM detection a much more feasible endeavor. To be able to handle the large datasets, the query-based setting and other specificities proper to CRM detection on ChIP-Seq based data, we developed a novel powerful CRM detection method 'CPModule'. By applying it on a well-studied ChIP-Seq data set involved in self-renewal of mouse embryonic stem cells, we demonstrate how our tool can recover combinatorial regulation of five known TFs that are key in the self-renewal of mouse embryonic stem cells. Additionally, we make a number of new predictions on combinatorial regulation of these five key TFs with other TFs documented in TRANSFAC

    Graded potential of neural crest to form cornea, sensory neurons and cartilage along the rostrocaudal axis

    Get PDF
    Neural crest cells arising from different rostrocaudal axial levels form different sets of derivatives as diverse as ganglia, cartilage and cornea. These variations may be due to intrinsic properties of the cell populations, different environmental factors encountered during migration or some combination thereof. We test the relative roles of intrinsic versus extrinsic factors by challenging the developmental potential of cardiac and trunk neural crest cells via transplantation into an ectopic midbrain environment. We then assess long-term survival and differentiation into diverse derivatives, including cornea, trigeminal ganglion and branchial arch cartilage. Despite their ability to migrate to the periocular region, neither cardiac nor trunk neural crest contribute appropriately to the cornea, with cardiac crest cells often forming ectopic masses on the corneal surface. Similarly, the potential of trunk and cardiac neural crest to form somatosensory neurons in the trigeminal ganglion was significantly reduced compared with control midbrain grafts. Cardiac neural crest exhibited a reduced capacity to form cartilage, contributing only nominally to Meckle's cartilage, whereas trunk neural crest formed no cartilage after transplantation, even when grafted directly into the first branchial arch. These results suggest that neural crest cells along the rostrocaudal axis display a graded loss in developmental potential to form somatosensory neurons and cartilage even after transplantation to a permissive environment. Hox gene expression was transiently maintained in the cardiac neural tube and neural crest at 12 hours post-transplantation to the midbrain, but was subsequently downregulated. This suggests that long-term differences in Hox gene expression cannot account for rostrocaudal differences in developmental potential of neural crest populations in this case

    Bta-miR-10b secreted by bovine embryos negatively impacts preimplantation embryo quality

    Get PDF
    In a previous study, we found miR-10b to be more abundant in a conditioned culture medium of degenerate embryos compared to that of blastocysts. Here, we show that miR-10b mimics added to the culture medium can be taken up by embryos. This uptake results in an increase in embryonic cell apoptosis and aberrant expression of DNA methyltransferases (DNMTs). Using several algorithms, Homeobox Al (HOXA1) was identified as one of the potential miR-10b target genes and dual-luciferase assay confirmed HOXA1 as a direct target of miR-10b. Microinjection of si-HOXA1 into embryos also resulted in an increase in embryonic cell apoptosis and downregulation of DNMTs. Cell progression analysis using Madin-Darby bovine kidney cells (MDBKs) showed that miR-10b overexpression and HOXA1 knockdown results in suppressed cell cycle progression and decreased cell viability. Overall, this work demonstrates that miR-10b negatively influences embryo quality and might do this through targeting HOXA1 and/or influencing DNA methylation

    Subtractive hybridization identifies stem cell-associated genes in an acute myeloid leukemia with poor prognosis

    Get PDF
    Introduction: Current prognostic markers have improved survival prediction, however, it has not advanced treatment strategies. Gene expression profiling may identify biological markers suitable as therapeutic targets. Leukaemia stem cell is associated with adverse outcome, however, its biological characteristics are still being investigated. We observed higher in vitro cell viability in acute myeloid leukaemia (AML) samples with poor prognosis, which may be stem cell related. Objective: The objective of this study was to profile highly expressed genes in an AML sample of poor prognosis/high viability and compare with a sample of good prognosis/low viability. Method: Subtractive hybridization was performed on two AML samples with high blast counts (>80%), a poor prognosis, PP (disease free survival, DFS12 months) sample. The PP sample had higher CD34+ counts (73% vs 46%) and higher cell viability than the GP sample. cDNA libraries were subsequently cloned and sequenced. Results: cDNA subtracted from the PP samples was identified as genes active during fetal/embryonic development (LCOR, CNOT1, ORMDL1), HOX-related genes (HOXA3, PBX3, SF3B1), hematopoiesis (SELL, IL-3RA) and aerobic lycolysis/hypoxia (PGK1, HIGD1A) -associated genes. Majority of GP clones isolated contained genes involved in oxidative phosphorylation, OXPHOS (COXs, ATPs, MTND4 and MTRNR2), protein synthesis (including ribosomal proteins, initiating and elongation factors), chromatin remodeling (H2AFZ, PTMA), cell motility (MALAT1, CALM2, TMSB4X), and mitochondria (HSPA9, MPO) genes. Conclusion: Thus, the PP sample exhibited stem cell-like features while the GP sample showed cells at a high level of cell activity. These genes are potential prognostic markers and targets for therapy

    ISL1 is a major susceptibility gene for classic bladder exstrophy and a regulator of urinary tract development.

    Get PDF
    Previously genome-wide association methods in patients with classic bladder exstrophy (CBE) found association with ISL1, a master control gene expressed in pericloacal mesenchyme. This study sought to further explore the genetics in a larger set of patients following-up on the most promising genomic regions previously reported. Genotypes of 12 markers obtained from 268 CBE patients of Australian, British, German Italian, Spanish and Swedish origin and 1,354 ethnically matched controls and from 92 CBE case-parent trios from North America were analysed. Only marker rs6874700 at the ISL1 locus showed association (p = 2.22 × 10-08). A meta-analysis of rs6874700 of our previous and present study showed a p value of 9.2 × 10-19. Developmental biology models were used to clarify the location of ISL1 activity in the forming urinary tract. Genetic lineage analysis of Isl1-expressing cells by the lineage tracer mouse model showed Isl1-expressing cells in the urinary tract of mouse embryos at E10.5 and distributed in the bladder at E15.5. Expression of isl1 in zebrafish larvae staged 48 hpf was detected in a small region of the developing pronephros. Our study supports ISL1 as a major susceptibility gene for CBE and as a regulator of urinary tract development
    corecore