209 research outputs found

    Positivity of relative canonical bundles and applications

    Full text link
    Given a family f:XSf:\mathcal X \to S of canonically polarized manifolds, the unique K\"ahler-Einstein metrics on the fibers induce a hermitian metric on the relative canonical bundle KX/S\mathcal K_{\mathcal X/S}. We use a global elliptic equation to show that this metric is strictly positive on X\mathcal X, unless the family is infinitesimally trivial. For degenerating families we show that the curvature form on the total space can be extended as a (semi-)positive closed current. By fiber integration it follows that the generalized Weil-Petersson form on the base possesses an extension as a positive current. We prove an extension theorem for hermitian line bundles, whose curvature forms have this property. This theorem can be applied to a determinant line bundle associated to the relative canonical bundle on the total space. As an application the quasi-projectivity of the moduli space Mcan\mathcal M_{\text{can}} of canonically polarized varieties follows. The direct images RnpfΩX/Sp(KX/Sm)R^{n-p}f_*\Omega^p_{\mathcal X/S}(\mathcal K_{\mathcal X/S}^{\otimes m}), m>0m > 0, carry natural hermitian metrics. We prove an explicit formula for the curvature tensor of these direct images. We apply it to the morphisms SpTSRpfΛpTX/SS^p \mathcal T_S \to R^pf_*\Lambda^p\mathcal T_{\mathcal X/S} that are induced by the Kodaira-Spencer map and obtain a differential geometric proof for hyperbolicity properties of Mcan\mathcal M_{\text{can}}.Comment: Supercedes arXiv:0808.3259v4 and arXiv:1002.4858v2. To appear in Invent. mat

    Displacement interpolations from a Hamiltonian point of view

    Full text link
    One of the most well-known results in the theory of optimal transportation is the equivalence between the convexity of the entropy functional with respect to the Riemannian Wasserstein metric and the Ricci curvature lower bound of the underlying Riemannian manifold. There are also generalizations of this result to the Finsler manifolds and manifolds with a Ricci flow background. In this paper, we study displacement interpolations from the point of view of Hamiltonian systems and give a unifying approach to the above mentioned results.Comment: 46 pages (A discussion on the Finsler case and a new example are added

    Horizontal Forms of Chern Type on Complex Finsler Bundles

    Full text link
    The aim of this paper is to construct horizontal Chern forms of a holomorphic vector bundle using complex Finsler structures. Also, some properties of these forms are studied

    Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian manifolds

    Get PDF
    Measure contraction property is one of the possible generalizations of Ricci curvature bound to more general metric measure spaces. In this paper, we discover sufficient conditions for a three dimensional contact subriemannian manifold to satisfy this property.Comment: 49 page

    Holomorphic sectional curvature of complex Finsler manifolds

    Get PDF
    In this paper, we get an inequality in terms of holomorphic sectional curvature of complex Finsler metrics. As applications, we prove a Schwarz Lemma from a complete Riemannian manifold to a complex Finsler manifold. We also show that a strongly pseudoconvex complex Finsler manifold with semi-positive but not identically zero holomorphic sectional curvature has negative Kodaira dimension under an extra condition.Comment: 20 pages, revised version, to appear in The Journal of Geometric Analysi
    corecore