81,190 research outputs found

    On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal

    Full text link
    The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the mag- netic field in the solar photosphere. It observes the full solar disk in the Fe I absorption line at 6173\AA . We use the output of a high-resolution 3D, time- dependent, radiation-hydrodynamic simulation based on the CO5BOLD code to calculate profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles F({\lambda},x,y,t) are multiplied by a representative set of HMI filter transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler velocities V_HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross- correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.Comment: 15 pages, 11 Figure

    Two-Dimensional Helioseismic Power, Phase, and Coherence Spectra of {\it Solar Dynamics Observatory} Photospheric and Chromospheric Observables

    Full text link
    While the {\it Helioseismic and Magnetic Imager} (HMI) onboard the {\it Solar Dynamics Observatory} (SDO) provides Doppler velocity [VV], continuum intensity [ICI_C], and line-depth [LdLd] observations, each of which is sensitive to the five-minute acoustic spectrum, the {\it Atmospheric Imaging Array} (AIA) also observes at wavelengths -- specifically the 1600 and 1700 Angstrom bands -- that are partly formed in the upper photosphere and have good sensitivity to acoustic modes. In this article we consider the characteristics of the spatio--temporal Fourier spectra in AIA and HMI observables for a 15-degree region around NOAA Active Region 11072. We map the spatio--temporal-power distribution for the different observables and the HMI Line Core [ILI_L], or Continuum minus Line Depth, and the phase and coherence functions for selected observable pairs, as a function of position and frequency. Five-minute oscillation power in all observables is suppressed in the sunspot and also in plage areas. Above the acoustic cut-off frequency, the behaviour is more complicated: power in HMI ICI_C is still suppressed in the presence of surface magnetic fields, while power in HMI ILI_L and the AIA bands is suppressed in areas of surface field but enhanced in an extended area around the active region, and power in HMI VV is enhanced in a narrow zone around strong-field concentrations and suppressed in a wider surrounding area. The relative phase of the observables, and their cross-coherence functions, are also altered around the active region. These effects may help us to understand the interaction of waves and magnetic fields in the different layers of the photosphere, and will need to be taken into account in multi-wavelength local helioseismic analysis of active regions.Comment: 18 pages, 15 figures, to be published in Solar Physic

    What counts as numeracy?

    Get PDF
    The purpose of the study was to infer the Scottish HMI view of what is meant by Numeracy given the concerns that primary children's achievements in Numeracy reflect a lack of flexibility in handling number and an overemphasis on procedures at the expense of understanding (HMI, 1997). Three hundred HMI reports on primary schools in Scotland were randomly selected. Content analysis of the sections on Number, Money and Measurement revealed Numeracy to be conceived of as computational proficiency and as understanding of number. Surprisingly, there were significantly more (p<0.05) references to computational proficiency than there were to understanding of number. The results are discussed in terms of what it means to understand number. It is suggested that there needs to be much clearer delineation of what is required and meant by the idea of understanding number

    Measurements of the Sun's High Latitude Meridional Circulation

    Full text link
    The meridional circulation at high latitudes is crucial to the build-up and reversal of the Sun's polar magnetic fields. Here we characterize the axisymmetric flows by applying a magnetic feature cross-correlation procedure to high resolution magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We focus on Carrington Rotations 2096-2107 (April 2010 to March 2011) - the overlap interval between HMI and the Michelson Doppler Investigation (MDI). HMI magnetograms averaged over 720 seconds are first mapped into heliographic coordinates. Strips from these maps are then cross-correlated to determine the distances in latitude and longitude that the magnetic element pattern has moved, thus providing meridional flow and differential rotation velocities for each rotation of the Sun. Flow velocities were averaged for the overlap interval and compared to results obtained from MDI data. This comparison indicates that these HMI images are rotated counter-clockwise by 0.075 degrees with respect to the Sun's rotation axis. The profiles indicate that HMI data can be used to reliably measure these axisymmetric flow velocities to at least within 5 degrees of the poles. Unlike the noisier MDI measurements, no evidence of a meridional flow counter-cell is seen in either hemisphere with the HMI measurements: poleward flow continues all the way to the poles. Slight North-South asymmetries are observed in the meridional flow. These asymmetries should contribute to the observed asymmetries in the polar fields and the timing of their reversals.Comment: 6 pages, 3 color figures, accepted for publication in The Astrophysical Journal Lette

    Identifying Solar Flare Precursors Using Time Series of SDO/HMI Images and SHARP Parameters

    Full text link
    We present several methods towards construction of precursors, which show great promise towards early predictions, of solar flare events in this paper. A data pre-processing pipeline is built to extract useful data from multiple sources, Geostationary Operational Environmental Satellites (GOES) and Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI), to prepare inputs for machine learning algorithms. Two classification models are presented: classification of flares from quiet times for active regions and classification of strong versus weak flare events. We adopt deep learning algorithms to capture both the spatial and temporal information from HMI magnetogram data. Effective feature extraction and feature selection with raw magnetogram data using deep learning and statistical algorithms enable us to train classification models to achieve almost as good performance as using active region parameters provided in HMI/Space-Weather HMI-Active Region Patch (SHARP) data files. Case studies show a significant increase in the prediction score around 20 hours before strong solar flare events

    On the Coordinate System of Space-Weather HMI Active Region Patches (SHARPs): A Technical Note

    Full text link
    We describe the coordinate systems of two streams of HMI active region vector data. A distinction is made between (a) the 2D grid on which the field vector is measured (or sampled), and (b) the 3D coordinate established at each grid point, in which the field vector is presented. The HMI data reduction can involve coordinate changes on both, with those performed on the former termed "remapping", the latter "vector transformation". Relevant pipeline procedures are described. Useful examples are given for data analysis.Comment: Technical note for the HMI vector data pipeline. Containing data analysis example. Corrected typo in Eq(6

    Comparison of Ground- and Space-based Longitudinal Magnetograms

    Full text link
    We compare photospheric line-of-sight magnetograms from the Synoptic Long-term Investigations of the Sun (SOLIS) vector spectromagnetograph (VSM) instrument with observations from the 150-foot Solar Tower at Mt. Wilson (MWO), Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), and Michelson Doppler Imager (MDI) on Solar and Heliospheric Observatory (SOHO). We find very good agreement between VSM and the other data sources for both disk-averaged flux densities and pixel-by-pixel measurements. We show that the VSM mean flux density time series is of consistently high signal-to-noise with no significant zero-offsets. We discuss in detail some of the factors -spatial resolution, flux dependence and position on the solar disk- affecting the determination of scaling between VSM and SOHO/MDI or SDO/HMI magnetograms. The VSM flux densities agree well with spatially smoothed data from MDI and HMI, although the scaling factors show clear dependence on flux density. The factor to convert VSM to HMI increases with increasing flux density (from \approx1 to \approx1.5). The nonlinearity is smaller for the VSM vs. ~SOHO/MDI scaling factor (from \approx1 to \approx1.2).Comment: Accepted for publication in Solar Physic

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance

    Get PDF
    The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The primary 720s observables were released in mid 2010, including Stokes polarization parameters measured at six wavelengths as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180 degree azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.Comment: 42 pages, 19 figures, accepted to Solar Physic
    corecore