1,070 research outputs found

    Incorporating web analysis into neural networks: An example in hopfield net searching

    Get PDF
    Neural networks have been used in various applications on the World Wide Web, but most of them only rely on the available input-output examples without incorporating Web-specific knowledge, such as Web link analysis, into the network design. In this paper, we propose a new approach in which the Web is modeled as an asymmetric Hopfield Net. Each neuron in the network represents a Web page, and the connections between neurons represent the hyperlinks between Web pages. Web content analysis and Web link analysis are also incorporated into the model by adding a page content score function and a link score function into the weights of the neurons and the synapses, respectively. A simulation study was conducted to compare the proposed model with traditional Web search algorithms, namely, a breadth-first search and a best-first search using PageRank as the heuristic. The results showed that the proposed model performed more efficiently and effectively in searching for domain-specific Web pages. We believe that the model can also be useful in other Web applications such as Web page clustering and search result ranking. © 2007 IEEE.published_or_final_versio

    Selective web information retrieval

    Get PDF
    This thesis proposes selective Web information retrieval, a framework formulated in terms of statistical decision theory, with the aim to apply an appropriate retrieval approach on a per-query basis. The main component of the framework is a decision mechanism that selects an appropriate retrieval approach on a per-query basis. The selection of a particular retrieval approach is based on the outcome of an experiment, which is performed before the final ranking of the retrieved documents. The experiment is a process that extracts features from a sample of the set of retrieved documents. This thesis investigates three broad types of experiments. The first one counts the occurrences of query terms in the retrieved documents, indicating the extent to which the query topic is covered in the document collection. The second type of experiments considers information from the distribution of retrieved documents in larger aggregates of related Web documents, such as whole Web sites, or directories within Web sites. The third type of experiments estimates the usefulness of the hyperlink structure among a sample of the set of retrieved Web documents. The proposed experiments are evaluated in the context of both informational and navigational search tasks with an optimal Bayesian decision mechanism, where it is assumed that relevance information exists. This thesis further investigates the implications of applying selective Web information retrieval in an operational setting, where the tuning of a decision mechanism is based on limited existing relevance information and the information retrieval system’s input is a stream of queries related to mixed informational and navigational search tasks. First, the experiments are evaluated using different training and testing query sets, as well as a mixture of different types of queries. Second, query sampling is introduced, in order to approximate the queries that a retrieval system receives, and to tune an ad-hoc decision mechanism with a broad set of automatically sampled queries

    Learning Visual Features from Snapshots for Web Search

    Full text link
    When applying learning to rank algorithms to Web search, a large number of features are usually designed to capture the relevance signals. Most of these features are computed based on the extracted textual elements, link analysis, and user logs. However, Web pages are not solely linked texts, but have structured layout organizing a large variety of elements in different styles. Such layout itself can convey useful visual information, indicating the relevance of a Web page. For example, the query-independent layout (i.e., raw page layout) can help identify the page quality, while the query-dependent layout (i.e., page rendered with matched query words) can further tell rich structural information (e.g., size, position and proximity) of the matching signals. However, such visual information of layout has been seldom utilized in Web search in the past. In this work, we propose to learn rich visual features automatically from the layout of Web pages (i.e., Web page snapshots) for relevance ranking. Both query-independent and query-dependent snapshots are considered as the new inputs. We then propose a novel visual perception model inspired by human's visual search behaviors on page viewing to extract the visual features. This model can be learned end-to-end together with traditional human-crafted features. We also show that such visual features can be efficiently acquired in the online setting with an extended inverted indexing scheme. Experiments on benchmark collections demonstrate that learning visual features from Web page snapshots can significantly improve the performance of relevance ranking in ad-hoc Web retrieval tasks.Comment: CIKM 201
    corecore