2 research outputs found

    MISS: Finding Optimal Sample Sizes for Approximate Analytics

    Full text link
    Nowadays, sampling-based Approximate Query Processing (AQP) is widely regarded as a promising way to achieve interactivity in big data analytics. To build such an AQP system, finding the minimal sample size for a query regarding given error constraints in general, called Sample Size Optimization (SSO), is an essential yet unsolved problem. Ideally, the goal of solving the SSO problem is to achieve statistical accuracy, computational efficiency and broad applicability all at the same time. Existing approaches either make idealistic assumptions on the statistical properties of the query, or completely disregard them. This may result in overemphasizing only one of the three goals while neglect the others. To overcome these limitations, we first examine carefully the statistical properties shared by common analytical queries. Then, based on the properties, we propose a linear model describing the relationship between sample sizes and the approximation errors of a query, which is called the error model. Then, we propose a Model-guided Iterative Sample Selection (MISS) framework to solve the SSO problem generally. Afterwards, based on the MISS framework, we propose a concrete algorithm, called L2L^2Miss, to find optimal sample sizes under the L2L^2 norm error metric. Moreover, we extend the L2L^2Miss algorithm to handle other error metrics. Finally, we show theoretically and empirically that the L2L^2Miss algorithm and its extensions achieve satisfactory accuracy and efficiency for a considerably wide range of analytical queries

    Visualization by Example

    Full text link
    While visualizations play a crucial role in gaining insights from data, generating useful visualizations from a complex dataset is far from an easy task. Besides understanding the functionality provided by existing visualization libraries, generating the desired visualization also requires reshaping and aggregating the underlying data as well as composing different visual elements to achieve the intended visual narrative. This paper aims to simplify visualization tasks by automatically synthesizing the required program from simple visual sketches provided by the user. Specifically, given an input data set and a visual sketch that demonstrates how to visualize a very small subset of this data, our technique automatically generates a program that can be used to visualize the entire data set. Automating visualization poses several challenges. First, because many visualization tasks require data wrangling in addition to generating plots, we need to decompose the end-to-end synthesis task into two separate sub-problems. Second, because the intermediate specification that results from the decomposition is necessarily imprecise, this makes the data wrangling task particularly challenging in our context. In this paper, we address these problems by developing a new compositional visualization-by-example technique that (a) decomposes the end-to-end task into two different synthesis problems over different DSLs and (b) leverages bi-directional program analysis to deal with the complexity that arises from having an imprecise intermediate specification. We implemented our visualization-by-example algorithm and evaluate it on 83 visualization tasks collected from on-line forums and tutorials. Viser can solve 84% of these benchmarks within a 600 second time limit, and, for those tasks that can be solved, the desired visualization is among the top-5 generated by Viser in 70% of the cases
    corecore