7,256 research outputs found

    Stringent and Robust Constraints on the Dark Matter Annihilation Cross Section From the Region of the Galactic Center

    Full text link
    For any realistic halo profile, the Galactic Center is predicted to be the brightest source of gamma-rays from dark matter annihilations. Due in large part to uncertainties associated with the dark matter distribution and astrophysical backgrounds, however, the most commonly applied constraints on the dark matter annihilation cross section have been derived from other regions, such as dwarf spheroidal galaxies. In this article, we study Fermi Gamma-Ray Space Telescope data from the direction of the inner Galaxy and derive stringent upper limits on the dark matter's annihilation cross section. Even for the very conservative case of a dark matter distribution with a significant (~kpc) constant-density core, normalized to the minimum density needed to accommodate rotation curve and microlensing measurements, we find that the Galactic Center constraint is approximately as stringent as those derived from dwarf galaxies (which were derived under the assumption of an NFW distribution). For NFW or Einasto profiles (again, normalized to the minimum allowed density), the Galactic Center constraints are typically stronger than those from dwarfs.Comment: 20 pages, 14 figure

    Phase resolved X-ray spectroscopy of HDE228766: Probing the wind of an extreme Of+/WNLha star

    Full text link
    HDE228766 is a very massive binary system hosting a secondary component, which is probably in an intermediate evolutionary stage between an Of supergiant and an WN star. The wind of this star collides with the wind of its O8 II companion, leading to relatively strong X-ray emission. Measuring the orbital variations of the line-of-sight absorption toward the X-ray emission from the wind-wind interaction zone yields information on the wind densities of both stars. X-ray spectra have been collected at three key orbital phases to probe the winds of both stars. Optical photometry has been gathered to set constraints on the orbital inclination of the system. The X-ray spectra reveal prominent variations of the intervening column density toward the X-ray emission zone, which are in line with the expectations for a wind-wind collision. We use a toy model to set constraints on the stellar wind parameters by attempting to reproduce the observed variations of the relative fluxes and wind optical depths at 1 keV. The lack of strong optical eclipses sets an upper limit of about 68 degrees on the orbital inclination. The analysis of the variations of the X-ray spectra suggests an inclination in the range 54 - 61 degrees and indicates that the secondary wind momentum ratio exceeds that of the primary by at least a factor 5. Our models further suggest that the bulk of the X-ray emission arises from the innermost region of the wind interaction zone, which is from a region whose outer radius, as measured from the secondary star, lies between 0.5 and 1.5 times the orbital separation

    Multispecies quantum Hurwitz numbers

    Full text link
    The construction of hypergeometric 2D Toda τ\tau-functions as generating functions for quantum Hurwitz numbers is extended here to multispecies families. Both the enumerative geometrical significance of these multispecies quantum Hurwitz numbers as weighted enumerations of branched coverings of the Riemann sphere and their combinatorial significance in terms of weighted paths in the Cayley graph of SnS_n are derived.Comment: 11 pages.This is the revised version posted March 30, 201

    Holographic Dark Energy Models and Higher Order Generalizations in Dynamical Chern-Simons Modified Gravity

    Get PDF
    Dark Energy models are here investigated and studied in the framework of the Chern-Simons modified gravity model. We bring into focus the Holographic Dark Energy (HDE) model with Granda-Oliveros cut-off, the Modified Holographic Ricci Dark Energy (MHRDE) model and, moreover, a model with higher derivatives of the Hubble parameter as well. The relevant expressions of the scale factor a(t) for a Friedmann-Robertson-Walker Universe are derived and studied, and in this context, the evolution of the scale factor is shown to be similar to that one displayed by the modified Chaplygin gas in two of the above models.Comment: 7 pages, to appear in Eur. Phys. J.

    Field Theory of Disordered Elastic Interfaces at 3-Loop Order: The β\beta-Function

    Full text link
    We calculate the effective action for disordered elastic manifolds in the ground state (equilibrium) up to 3-loop order. This yields the renormalization-group β\beta-function to third order in ϵ=4d\epsilon=4-d, in an expansion in the dimension dd around the upper critical dimension d=4d=4. The calculations are performed using exact RG, and several other techniques, which allow us to resolve consistently the problems associated with the cusp of the renormalized disorder.Comment: This is the first part of arXiv:1707.09802v1. The remaining part is in arXiv:1707.09802v2. 47 pages, 67 figures. v2: typos corrected and hyper-ref enable

    RXTE Observation of Cygnus X-1: II. Timing Analysis

    Full text link
    We present timing analysis for a Rossi X-ray Timing Explorer observation of Cygnus X-1 in its hard/low state. This was the first RXTE observation of Cyg X-1 taken after it transited back to this state from its soft/high state. RXTE's large effective area, superior timing capabilities, and ability to obtain long, uninterrupted observations have allowed us to obtain measurements of the power spectral density (PSD), coherence function, and Fourier time lags to a decade lower in frequency and half a decade higher in frequency than typically was achieved with previous instruments. Notable aspects of our observations include a weak 0.005 Hz feature in the PSD coincident with a coherence recovery; a `hardening' of the high-frequency PSD with increasing energy; a broad frequency range measurement of the coherence function, revealing rollovers from unity coherence at both low and high frequency; and an accurate determination of the Fourier time lags over two and a half decades in frequency. As has been noted in previous similar observations, the time delay is approximately proportional to f^(-0.7), and at a fixed Fourier frequency the time delay of the hard X-rays compared to the softest energy channel tends to increase logarithmically with energy. Curiously, the 0.01-0.2 Hz coherence between the highest and lowest energy bands is actually slightly greater than the coherence between the second highest and lowest energy bands. We carefully describe all of the analysis techniques used in this paper, and we make comparisons of the data to general theoretical expectations. In a companion paper, we make specific comparisons to a Compton corona model that we have successfully used to describe the energy spectral data from this observation.Comment: To Be Published in the Astrophysical Journal. 18 pages. Uses emulatepaj.st
    corecore