776,845 research outputs found
Searches for HCl and HF in comets 103P/Hartley 2 and C/2009 P1 (Garradd) with the Herschel space observatory
HCl and HF are expected to be the main reservoirs of fluorine and chlorine
wherever hydrogen is predominantly molecular. They are found to be strongly
depleted in dense molecular clouds, suggesting freeze-out onto grains in such
cold environments. We can then expect that HCl and HF were also the major
carriers of Cl and F in the gas and icy phases of the outer solar nebula, and
were incorporated into comets. We aimed to measure the HCl and HF abundances in
cometary ices as they can provide insights on the halogen chemistry in the
early solar nebula. We searched for the J(1-0) lines of HCl and HF at 626 and
1232 GHz, respectively, using the HIFI instrument on board the Herschel Space
Observatory. HCl was searched for in comets 103P/Hartley 2 and C/2009 P1
(Garradd), whereas observations of HF were conducted in comet C/2009 P1. In
addition, observations of HO and HO lines were performed in C/2009
P1 to measure the HO production rate. Three lines of CHOH were
serendipitously observed in the HCl receiver setting. HCl is not detected,
whereas a marginal (3.6-) detection of HF is obtained. The upper limits
for the HCl abundance relative to water are 0.011% and 0.022%, for 103P and
C/2009 P1, respectively, showing that HCl is depleted with respect to the solar
Cl/O abundance by a factor more than 6 in 103P, where the error is
related to the uncertainty in the chlorine solar abundance. The marginal HF
detection obtained in C/2009 P1 corresponds to an HF abundance relative to
water of (1.80.5) 10, which is approximately consistent
with a solar photospheric F/O abundance. The observed depletion of HCl suggests
that HCl was not the main reservoir of chlorine in the regions of the solar
nebula where these comets formed. HF was possibly the main fluorine compound in
the gas phase of the outer solar nebula.Comment: Accepted for publication in Astronomy & Astrophysic
Threshold photoelectron photoion coincidence spectroscopy of trichloroethene and tetrachloroethene
The threshold photoelectron, the threshold photoelectron photoion coincidence and ion breakdown spectra of trichloroethene and tetrachloroethene have been recorded from 9 – 22 eV. Comparisons with the equivalent data for the three dichloroethene molecules and theoretical calculations highlight the nature of the orbitals involved during photoionisation in this energy range. The ground electronic state of CHCl (CCl) is bound, with excited valence states dissociating to CHCl (CCl) and CHCl (CCl). Appearance energies suggest that CHCl forms from CHCl by loss of two chlorine atoms, whereas CCl forms from CCl by loss of a Cl molecule. The translational kinetic energy release into CHCl (CCl) + Cl is determined as a function of energy. In both cases, the fraction of the available energy released into translational energy of the two products decreases as the photon energy increases
In situ exhaust cloud measurements
Airborne in situ exhaust cloud measurements were conducted to obtain definitions of cloud particle size range, Cl2 content, and HCl partitioning. Particle size distribution data and Cl2 measurements were made during the May, August, and September 1977 Titan launches. The measurements of three basic effluents - HCl, NO sub X, and particles - against minutes after launch are plotted. The maximum observed HCl concentration to the maximum Cl2 concentration are compared and the ratios of the Cl2 to the HCl is calculated
Chemical reactivity of ultracold polar molecules: investigation of H + HCl and H + DCl collisions
Quantum scattering calculations are reported for the H+HCl(v,j=0) and
H+DCl(v,j=0) collisions for vibrational levels v=0-2 of the diatoms.
Calculations were performed for incident kinetic energies in the range 10-7 to
10-1 eV, for total angular momentum J=0 and s-wave scattering in the entrance
channel of the collisions. Cross sections and rate coefficients are
characterized by resonance structures due to quasibound states associated with
the formation of the H...HCl and H...DCl van der Waals complexes in the
incident channel. For the H+HCl(v,j=0) collision for v=1,2, reactive scattering
leading to H_2 formation is found to dominate over non-reactive vibrational
quenching in the ultracold regime. Vibrational excitation of HCl from v=0 to
v=2 increases the zero-temperature limiting rate coefficient by about 8 orders
of magnitude.Comment: 9 pages, 6 figures, submitted to Euro. Phys. J. topical issue on
"Ultracold Polar Molecules: Formation and Collisions
Fundamental Vibrational Transitions of HCl Detected in CRL 2136
We would like to understand the chemistry of dense clouds and their hot cores
more quantitatively by obtaining more complete knowledge of the chemical
species present in them. We have obtained high-resolution infrared absorption
spectroscopy at 3-4 um toward the bright infrared source CRL 2136. The
fundamental vibration-rotation band of HCl has been detected within a dense
cloud for the first time. The HCl is probably located in the warm compact
circumstellar envelope or disk of CRL 2136. The fractional abundance of HCl is
(4.9-8.7)e-8, indicating that approximately 20 % of the elemental chlorine is
in gaseous HCl. The kinetic temperature of the absorbing gas is 250 K, half the
value determined from infrared spectroscopy of 13CO and water. The percentage
of chlorine in HCl is approximately that expected for gas at this temperature.
The reason for the difference in temperatures between the various molecular
species is unknown.Comment: 6 pages, 3 figures, A&A in pres
Oral Migalastat HCl Leads to Greater Systemic Exposure and Tissue Levels of Active α-Galactosidase A in Fabry Patients when Co-Administered with Infused Agalsidase.
UnlabelledMigalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified.Trial registrationClinicalTrials.gov NCT01196871
Synthesis and catalytic performance of CeOCl in Deacon reaction
Surface chlorinated CeO2 is an efficient material for HCl oxidation, which raises the question whether an oxychloride phase could be also active in the same reaction. CeOCl was synthesized by solid state reaction of cerium oxide with anhydrous cerium chloride and tested in HCl oxidation using various feed compositions at 703 K. X-ray diffraction of post-reaction samples revealed that CeOCl is unstable, in both oxygen-rich and -lean conditions. Applying oxygen over-stoichiometric feeds led to complete transformation of CeOCl into CeO2. Considerable HCl conversions were obtained only after this transformation, which confirms the essential role of bulk cerium oxide in this catalytic system
Spectroscopic requirements for HALOE: An analysis of the HCl and HF channels
Spectral line parameters that have absorption features within the HCl and HF channels of the Halogen Occultation Experiment (HALOE) were evaluated. Line positions and identification of stratospheric and solar absorption features in both channels are presented based on an analysis of high-resolution, balloon-borne solar occultation spectra. For the relevant HCl and HF lines and for transitions of the interfering species, the accuracy of the following spectral parameters was assessed: line positions, line strengths, lower state energies, air-broadened collisional half-widths, and temperature dependence of the air-broadened half-widths. In addition, since the HALOE instrument and calibration cells are filled with mixtures of HCl in N2 and HF in N2, the self-broadened and N2-broadened HF and HCl half-widths were also considered
Local density of states in disordered graphene
We study two lattice models, the honeycomb lattice (HCL) and a special square
lattice (SQL), both reducing to the Dirac equation in the continuum limit. In
the presence of disorder (gaussian potential disorder and random vector
potential), we investigate the behaviour of the density of states (DOS)
numerically and analytically. While an upper bound can be derived for the DOS
on the SQL at the Dirac point, which is also confirmed by numerical
calculations, no such upper limit exists for the HCL in the presence of random
vector potential. A careful investigation of the lowest eigenvalues indeed
indicate, that the DOS can possibly be divergent at the Dirac point on the HCL.
In spite of sharing a common continuum limit, these lattice models exhibit
different behaviour.Comment: 12 pages, 10 figure
- …
