6,437 research outputs found

    Distributed Design for Decentralized Control using Chordal Decomposition and ADMM

    Full text link
    We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADMM). We first apply a classical parameterization technique to restrict the optimal decentralized control into a convex problem that inherits the sparsity pattern of the original problem. The parameterization relies on a notion of strongly decentralized stabilization, and sufficient conditions are discussed to guarantee this notion. Then, chordal decomposition allows us to decompose the convex restriction into a problem with partially coupled constraints, and the framework of ADMM enables us to solve the decomposed problem in a distributed fashion. Consequently, the subsystems only need to share their model data with their direct neighbours, not needing a central computation. Numerical experiments demonstrate the effectiveness of the proposed method.Comment: 11 pages, 8 figures. Accepted for publication in the IEEE Transactions on Control of Network System

    System Level Synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty -- such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies.Comment: To appear in Annual Reviews in Contro

    Reduction of Second-Order Network Systems with Structure Preservation

    Get PDF
    This paper proposes a general framework for structure-preserving model reduction of a secondorder network system based on graph clustering. In this approach, vertex dynamics are captured by the transfer functions from inputs to individual states, and the dissimilarities of vertices are quantified by the H2-norms of the transfer function discrepancies. A greedy hierarchical clustering algorithm is proposed to place those vertices with similar dynamics into same clusters. Then, the reduced-order model is generated by the Petrov-Galerkin method, where the projection is formed by the characteristic matrix of the resulting network clustering. It is shown that the simplified system preserves an interconnection structure, i.e., it can be again interpreted as a second-order system evolving over a reduced graph. Furthermore, this paper generalizes the definition of network controllability Gramian to second-order network systems. Based on it, we develop an efficient method to compute H2-norms and derive the approximation error between the full-order and reduced-order models. Finally, the approach is illustrated by the example of a small-world network
    • …
    corecore