127,258 research outputs found
Hydration Modeling of Calcium Sulphates
The CEMHYD3D model has been extended at the University of Twente in the last ten years [1,2]. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the transitions between the different calcium sulphate phases (anhydrite, hemihydrate and gypsum). Besides that gypsum was seen as intermediate phase instead of a final phase. The presented model addresses these problems and has the possibility to simulate the microstructure development of gypsum, including reaction kinetics (dissolution, diffusion and precipitation) and the formation of gypsum needles. The model enables multi-time modelling which means the possibility to zoom in and out on the hydration process with respect to time. Multi-time modelling enables the user to study the hydration in more detail in both the early phase (hours) and on the long term (years). This modelling is needed, since the hydration of calcium sulphates is very short compared to that of cement
Hydration modelling of Calcium Sulphates
The CEMHYD3D model has been extended at the University of Twente in last ten years1,2. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the transitions between the different calcium sulphate phases (anhydrite, hemihydrate and gypsum). Besides that gypsum was seen as intermediate phase instead of a\ud
final phase. The presented model addresses these problems and has the possibility to simulate the microstructure development of gypsum, including reaction kinetics (dissolution, diffusion and precipitation) and the formation of gypsum needles. The model enables multi-time modelling which means the possibility to zoom in and out on the hydration process with respect to time. Multi-time modelling enables the user to study the hydration in more detail in both the early phase (hours) and on the long term (years). This modelling is needed, since the hydration of calcium sulphates is very short compared to that of cement
Chemical modeling for pH prediction of acidified musts with gypsum and tartaric acid in warm regions
Winemaking of musts acidified with up to 3 g/L of gypsum (CaSO4 2H2O) and tartaric acid, both individually and in combination, as well as a chemical modeling have been carried out to study the behaviour of these compounds as acidifiers. Prior to fermentation gypsum and tartaric acid reduce the pH by 0.12 and 0.17 pH units/g/L, respectively, but while gypsum does not increase the total acidity and reduces buffering power, tartaric acid shows the opposite behaviour. When these compounds were used in combination, the doses of tartaric acid necessary to reach a suitable pH were reduced. Calcium concentrations increase considerably in gypsum-acidified must, although they fell markedly after fermentation over time. Sulfate concentrations also increased, although with doses of 2 g/L they were lower than the maximum permitted level (2.5 g/L). Chemical modeling gave good results and the errors in pH predictions were less than 5% in almost all case
Road and bridge construction across gypsum karst in England
Gypsum karst problems in the Permian and Triassic sequences of England have caused difficult conditions for bridge and road construction. In Northern England, the Ripon Bypass crosses Permian strata affected by active gypsum karst and severe subsidence problems. Here, the initial borehole site investigation for the road was supplemented by resistivity tomography studies. The roadway was reinforced with two layers of tensile membrane material within the earth embankment. This will prevent dangerous catastrophic collapse, but will allow sagging to show where problems exist. The River Ure Bridge was constructed across an area of subsidence pipes filled with alluvial deposits. It was built with extra strength, larger than normal foundations. If one pier fails, the bridge is designed for adjacent arches to span the gap without collapse. The bridge piers are also fitted with electronic load monitoring to warn of failure. In the Midlands area of England, road construction over Triassic gypsum has required a phase of ground improvement on the Derby Southern Bypass. Here, the gypsum caps a hill where it was formerly mined; it dips through a karstic dissolution zone into an area of complete dissolution and collapse. The road and an associated flyover were built across these ground conditions. A major grouting program before the earthworks began treated the cavities in the mine workings and the cavernous margin of the gypsum mass. Within the karstic dissolution zone, gypsum blocks and cavities along the route were identified by conductivity and resistivity geophysical surveys, excavated and backfilled. In the areas of complete dissolution and collapse, the road foundation was strengthened with vibrated stone columns and a reinforced concrete road deck was used
Fire safety of steel wall systems using enhanced plasterboards
Fire safety design is important to eliminate the loss of property and lives during fire events. Gypsum plasterboard is widely used as a fire safety material in the building industry all over the world. It contains gypsum (CaSO4.2H2O) and Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Currently plasterboard manufacturers use additives such as vermiculite to overcome shrinkage of gypsum core and glass fibre to bridge shrinkage cracks and enhance the integrity of board during calcination and after the loss of paper facings in fires. Past research has also attempted to reduce the thermal conductivity of plasterboards using fillers. However, no research has been undertaken to enhance the specific heat of plasterboard and the points of dehydration using chemical additives and fillers. Hence detailed experimental studies of powdered samples of plasterboard mixed with chemical additives and fillers in varying proportions were conducted. These tests showed the enhancement of specific heat of plasterboard. Numerical models were also developed to investigate the thermal performance of enhanced plasterboards under standard fire conditions. The results showed that the use of these enhanced plasterboards in steel wall systems can significantly improve their fire performance. This paper presents the details of this research and the results that can be used to enhance the fire safety of steel wall systems commonly used in buildings
Road and bridge construction across gypsum karst in England
Gypsum karst problems in the Permian and Triassic sequences of England have caused difficult conditions for bridge and road construction. In Northern England, the Ripon Bypass crosses Permian strata affected by active gypsum karst and severe subsidence problems. Here, the initial borehole site investigation for the road was supplemented by resistivity tomography studies. The roadway was reinforced with two layers of tensile membrane material within the earth embankment. This will prevent dangerous catastrophic collapse, but will allow sagging to show where problems exist. The River Ure Bridge was constructed across an area of subsidence pipes filled with alluvial deposits. It was built with extra strength, larger than normal foundations. If one pier fails, the bridge is designed for adjacent arches to span the gap without collapse. The bridge piers are also fitted with electronic load monitoring to warn of failure. In the Midlands area of England, road construction over Triassic gypsum has required a phase of ground improvement on the Derby Southern Bypass. Here, the gypsum caps a hill where it was formerly mined; it dips through a karstic dissolution zone into an area of complete dissolution and collapse. The road and an associated flyover were built across these ground conditions. A major grouting program before the earthworks began treated the cavities in the mine workings and the cavernous margin of the gypsum mass. Within the karstic dissolution zone, gypsum blocks and cavities along the route were identified by conductivity and resistivity geophysical surveys, excavated and backfilled. In the areas of complete dissolution and collapse, the road foundation was strengthened with vibrated stone columns and a reinforced concrete road deck was used
Study of the Acidification of Sherry Musts With Gypsum and Tartaric Acid
Must acidification is a necessary operation in hot regions due to the low natural acid content of the grapes grown
there. Tartaric acid is what is most usually used for this purpose. Using gypsum (CaSO 4 • 2H20 ) allows the
amount of tartaric acid needed to reach a given pH to be reduced. This paper is a study of the acidification of
musts produced in Sherry area (Southern Spain) to a pH of 3.25 with tartaric acid alone and tartaric acid acting
together with 2 g/L of gypsum. Using gypsum causes a reduction in must pH of approximately 0.2 units and
allows the tartaric acid dosage to be cut down by 1.5 to 2.5 g/L. The concentration of sulfates in the fermented
wine lies below 2.5 g/L (the maximum authorized by the European Community), and the calcium concentration
is 130 mg/L. Both levels are compatible with a correct winemaking. The acid buffering power of the wine and
the alkalinity of the ash are reduced by the use of gypsum, which makes later acidification easier. Other wine
component levels are not affected
A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C₃A and Their Hydration Products in the Presence of Gypsum.
This paper shows the microstructural differences and phase characterization of pure phases and hydrated products of the cubic and orthorhombic (Na-doped) polymorphs of tricalcium aluminate (C₃A), which are commonly found in traditional Portland cements. Pure, anhydrous samples were characterized using scanning transmission X-ray microscopy (STXM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and demonstrated differences in the chemical and mineralogical composition as well as the morphology on a micro/nano-scale. C₃A/gypsum blends with mass ratios of 0.2 and 1.9 were hydrated using a water/C₃A ratio of 1.2, and the products obtained after three days were assessed using STXM. The hydration process and subsequent formation of calcium sulfate in the C₃A/gypsum systems were identified through the changes in the LIII edge fine structure for Calcium. The results also show greater Ca LII binding energies between hydrated samples with different gypsum contents. Conversely, the hydrated samples from the cubic and orthorhombic C₃A at the same amount of gypsum exhibited strong morphological differences but similar chemical environments
Gypsum hydration: a theoretical and experimental study
Calcium sulphate dihydrate (CaSO4·2H2O or gypsum) is used widely as building\ud
material because of its excellent fire resistance, aesthetics, and low price. Hemihydrate occurs in two formations of α- and β-type. Among them β-hemihydrate is mainly used to produce gypsum plasterboard since the hydration product of the α-hemihydrate is too brittle to be used as building material /10/. This article addresses the hydration of hemihydrate since it determines the properties of gypsum and it is influenced strongly by water and the properties of hemihydrate. The microstructure development of gypsum during hydration is investigated. The influence of water is studied from its effect on fresh behavior and void fraction of the gypsum
- …
