10,383 research outputs found

    What does Attention in Neural Machine Translation Pay Attention to?

    Full text link
    Attention in neural machine translation provides the possibility to encode relevant parts of the source sentence at each translation step. As a result, attention is considered to be an alignment model as well. However, there is no work that specifically studies attention and provides analysis of what is being learned by attention models. Thus, the question still remains that how attention is similar or different from the traditional alignment. In this paper, we provide detailed analysis of attention and compare it to traditional alignment. We answer the question of whether attention is only capable of modelling translational equivalent or it captures more information. We show that attention is different from alignment in some cases and is capturing useful information other than alignments.Comment: To appear in IJCNLP 201

    Domain Control for Neural Machine Translation

    Full text link
    Machine translation systems are very sensitive to the domains they were trained on. Several domain adaptation techniques have been deeply studied. We propose a new technique for neural machine translation (NMT) that we call domain control which is performed at runtime using a unique neural network covering multiple domains. The presented approach shows quality improvements when compared to dedicated domains translating on any of the covered domains and even on out-of-domain data. In addition, model parameters do not need to be re-estimated for each domain, making this effective to real use cases. Evaluation is carried out on English-to-French translation for two different testing scenarios. We first consider the case where an end-user performs translations on a known domain. Secondly, we consider the scenario where the domain is not known and predicted at the sentence level before translating. Results show consistent accuracy improvements for both conditions.Comment: Published in RANLP 201

    Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation

    Full text link
    We address the problem of semantic nighttime image segmentation and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night through progressively darker times of day, exploiting cross-time-of-day correspondences between daytime images from a reference map and dark images to guide the label inference in the dark domains; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 201 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark for our novel evaluation. Experiments show that our map-guided curriculum adaptation significantly outperforms state-of-the-art methods on nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can improve results on data with ambiguous content such as our benchmark and profit safety-oriented applications involving invalid inputs.Comment: IEEE T-PAMI 202
    • …
    corecore