134 research outputs found

    Suitably graded THB-spline refinement and coarsening: Towards an adaptive isogeometric analysis of additive manufacturing processes

    Get PDF
    In the present work we introduce a complete set of algorithms to efficiently perform adaptive refinement and coarsening by exploiting truncated hierarchical B-splines (THB-splines) defined on suitably graded isogeometric meshes, that are called admissible mesh configurations. We apply the proposed algorithms to two-dimensional linear heat transfer problems with localized moving heat source, as simplified models for additive manufacturing applications. We first verify the accuracy of the admissible adaptive scheme with respect to an overkilled solution, for then comparing our results with similar schemes which consider different refinement and coarsening algorithms, with or without taking into account grading parameters. This study shows that the THB-spline admissible solution delivers an optimal discretization for what concerns not only the accuracy of the approximation, but also the (reduced) number of degrees of freedom per time step. In the last example we investigate the capability of the algorithms to approximate the thermal history of the problem for a more complicated source path. The comparison with uniform and non-admissible hierarchical meshes demonstrates that also in this case our adaptive scheme returns the desired accuracy while strongly improving the computational efficiency.Comment: 20 pages, 12 figure

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Certified Reduced Basis Method for Affinely Parametric Isogeometric Analysis NURBS Approximation

    Get PDF
    In this work we apply reduced basis methods for parametric PDEs to an isogeometric formulation based on NURBS. We propose an integrated and complete work pipeline from CAD to parametrization of domain geometry, then from full order to certified reduced basis solution. IsoGeometric Analysis (IGA), as well as reduced basis methods for parametric PDEs growing research themes in scientific computing and computational mechanics. Their combination enhances the solution of some class of problems, especially the ones characterized by parametrized geometries. This work shows that it is also possible for some class of problems to deal with affine geometrical parametrization combined with a NURBS IGA formulation. In this work we show a certification of accuracy and a complete integration between IGA formulation and parametric certified greedy RB formulation by introducing two numerical examples in heat transfer with different parametrization
    • …
    corecore