76,287 research outputs found

    Simultaneously Structured Models with Application to Sparse and Low-rank Matrices

    Get PDF
    The topic of recovery of a structured model given a small number of linear observations has been well-studied in recent years. Examples include recovering sparse or group-sparse vectors, low-rank matrices, and the sum of sparse and low-rank matrices, among others. In various applications in signal processing and machine learning, the model of interest is known to be structured in several ways at the same time, for example, a matrix that is simultaneously sparse and low-rank. Often norms that promote each individual structure are known, and allow for recovery using an order-wise optimal number of measurements (e.g., â„“1\ell_1 norm for sparsity, nuclear norm for matrix rank). Hence, it is reasonable to minimize a combination of such norms. We show that, surprisingly, if we use multi-objective optimization with these norms, then we can do no better, order-wise, than an algorithm that exploits only one of the present structures. This result suggests that to fully exploit the multiple structures, we need an entirely new convex relaxation, i.e. not one that is a function of the convex relaxations used for each structure. We then specialize our results to the case of sparse and low-rank matrices. We show that a nonconvex formulation of the problem can recover the model from very few measurements, which is on the order of the degrees of freedom of the matrix, whereas the convex problem obtained from a combination of the â„“1\ell_1 and nuclear norms requires many more measurements. This proves an order-wise gap between the performance of the convex and nonconvex recovery problems in this case. Our framework applies to arbitrary structure-inducing norms as well as to a wide range of measurement ensembles. This allows us to give performance bounds for problems such as sparse phase retrieval and low-rank tensor completion.Comment: 38 pages, 9 figure

    Construction of a Large Class of Deterministic Sensing Matrices that Satisfy a Statistical Isometry Property

    Full text link
    Compressed Sensing aims to capture attributes of kk-sparse signals using very few measurements. In the standard Compressed Sensing paradigm, the \m\times \n measurement matrix \A is required to act as a near isometry on the set of all kk-sparse signals (Restricted Isometry Property or RIP). Although it is known that certain probabilistic processes generate \m \times \n matrices that satisfy RIP with high probability, there is no practical algorithm for verifying whether a given sensing matrix \A has this property, crucial for the feasibility of the standard recovery algorithms. In contrast this paper provides simple criteria that guarantee that a deterministic sensing matrix satisfying these criteria acts as a near isometry on an overwhelming majority of kk-sparse signals; in particular, most such signals have a unique representation in the measurement domain. Probability still plays a critical role, but it enters the signal model rather than the construction of the sensing matrix. We require the columns of the sensing matrix to form a group under pointwise multiplication. The construction allows recovery methods for which the expected performance is sub-linear in \n, and only quadratic in \m; the focus on expected performance is more typical of mainstream signal processing than the worst-case analysis that prevails in standard Compressed Sensing. Our framework encompasses many families of deterministic sensing matrices, including those formed from discrete chirps, Delsarte-Goethals codes, and extended BCH codes.Comment: 16 Pages, 2 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin

    Efficient Low Rank Matrix Recovery With Flexible Group Sparse Regularization

    Full text link
    In this paper, we present a novel approach to the low rank matrix recovery (LRMR) problem by casting it as a group sparsity problem. Specifically, we propose a flexible group sparse regularizer (FLGSR) that can group any number of matrix columns as a unit, whereas existing methods group each column as a unit. We prove the equivalence between the matrix rank and the FLGSR under some mild conditions, and show that the LRMR problem with either of them has the same global minimizers. We also establish the equivalence between the relaxed and the penalty formulations of the LRMR problem with FLGSR. We then propose an inexact restarted augmented Lagrangian method, which solves each subproblem by an extrapolated linearized alternating minimization method. We analyze the convergence of our method. Remarkably, our method linearizes each group of the variable separately and uses the information of the previous groups to solve the current group within the same iteration step. This strategy enables our algorithm to achieve fast convergence and high performance, which are further improved by the restart technique. Finally, we conduct numerical experiments on both grayscale images and high altitude aerial images to confirm the superiority of the proposed FLGSR and algorithm

    Sensing Matrix Design and Sparse Recovery on the Sphere and the Rotation Group

    Full text link
    In this paper, {the goal is to design deterministic sampling patterns on the sphere and the rotation group} and, thereby, construct sensing matrices for sparse recovery of band-limited functions. It is first shown that random sensing matrices, which consists of random samples of Wigner D-functions, satisfy the Restricted Isometry Property (RIP) with proper preconditioning and can be used for sparse recovery on the rotation group. The mutual coherence, however, is used to assess the performance of deterministic and regular sensing matrices. We show that many of widely used regular sampling patterns yield sensing matrices with the worst possible mutual coherence, and therefore are undesirable for sparse recovery. Using tools from angular momentum analysis in quantum mechanics, we provide a new expression for the mutual coherence, which encourages the use of regular elevation samples. We construct low coherence deterministic matrices by fixing the regular samples on the elevation and minimizing the mutual coherence over the azimuth-polarization choice. It is shown that once the elevation sampling is fixed, the mutual coherence has a lower bound that depends only on the elevation samples. This lower bound, however, can be achieved for spherical harmonics, which leads to new sensing matrices with better coherence than other representative regular sampling patterns. This is reflected as well in our numerical experiments where our proposed sampling patterns perfectly match the phase transition of random sampling patterns.Comment: IEEE Trans. on Signal Processin

    Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero

    Get PDF
    Gabidulin codes over fields of characteristic zero were recently constructed by Augot et al., whenever the Galois group of the underlying field extension is cyclic. In parallel, the interest in sparse generator matrices of Reed–Solomon and Gabidulin codes has increased lately, due to applications in distributed computations. In particular, a certain condition pertaining to the intersection of zero entries at different rows, was shown to be necessary and sufficient for the existence of the sparsest possible generator matrix of Gabidulin codes over finite fields. In this paper we complete the picture by showing that the same condition is also necessary and sufficient for Gabidulin codes over fields of characteristic zero.Our proof builds upon and extends tools from the finite-field case, combines them with a variant of the Schwartz–Zippel lemma over automorphisms, and provides a simple randomized construction algorithm whose probability of success can be arbitrarily close to one. In addition, potential applications for low-rank matrix recovery are discussed
    • …
    corecore