4 research outputs found

    Set-Monotonicity Implies Kelly-Strategyproofness

    Full text link
    This paper studies the strategic manipulation of set-valued social choice functions according to Kelly's preference extension, which prescribes that one set of alternatives is preferred to another if and only if all elements of the former are preferred to all elements of the latter. It is shown that set-monotonicity---a new variant of Maskin-monotonicity---implies Kelly-strategyproofness in comprehensive subdomains of the linear domain. Interestingly, there are a handful of appealing Condorcet extensions---such as the top cycle, the minimal covering set, and the bipartisan set---that satisfy set-monotonicity even in the unrestricted linear domain, thereby answering questions raised independently by Barber\`a (1977) and Kelly (1977).Comment: 14 page

    Necessary and sufficient conditions for the strategyproofness of irresolute social choice functions

    Full text link

    PREFERENCES: OPTIMIZATION, IMPORTANCE LEARNING AND STRATEGIC BEHAVIORS

    Get PDF
    Preferences are fundamental to decision making and play an important role in artificial intelligence. Our research focuses on three group of problems based on the preference formalism Answer Set Optimization (ASO): preference aggregation problems such as computing optimal (near optimal) solutions, strategic behaviors in preference representation, and learning ranks (weights) for preferences. In the first group of problems, of interest are optimal outcomes, that is, outcomes that are optimal with respect to the preorder defined by the preference rules. In this work, we consider computational problems concerning optimal outcomes. We propose, implement and study methods to compute an optimal outcome; to compute another optimal outcome once the first one is found; to compute an optimal outcome that is similar to (or, dissimilar from) a given candidate outcome; and to compute a set of optimal answer sets each significantly different from the others. For the decision version of several of these problems we establish their computational complexity. For the second topic, the strategic behaviors such as manipulation and bribery have received much attention from the social choice community. We study these concepts for preference formalisms that identify a set of optimal outcomes rather than a single winning outcome, the case common to social choice. Such preference formalisms are of interest in the context of combinatorial domains, where preference representations are only approximations to true preferences, and seeking a single optimal outcome runs a risk of missing the one which is optimal with respect to the actual preferences. In this work, we assume that preferences may be ranked (differ in importance), and we use the Pareto principle adjusted to the case of ranked preferences as the preference aggregation rule. For two important classes of preferences, representing the extreme ends of the spectrum, we provide characterizations of situations when manipulation and bribery is possible, and establish the complexity of the problem to decide that. Finally, we study the problem of learning the importance of individual preferences in preference profiles aggregated by the ranked Pareto rule or positional scoring rules. We provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decided all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples is NP-hard. We obtain similar results for the case of weighted profiles

    Group-Strategyproof Irresolute Social Choice Functions

    No full text
    An important problem in voting is that agents may misrepresent their preferences in order to obtain a more preferred outcome. Unfortunately, this phenomenon has been shown to be inevitable in the case of resolute, i.e., single-valued, social choice functions. In this paper, we introduce a variant of Maskin-monotonicity that completely characterizes the class of pairwise irresolute social choice functions that are group-strategyproof according to Kelly’s preference extension. The class is narrow but contains a number of appealing Condorcet extensions such as the minimal covering set and the bipartisan set, thereby answering a question raised independently by Barberà (1977) and Kelly (1977). These functions furthermore encourage participation and thus do not suffer from the no-show paradox (under Kelly’s extension)
    corecore