21,778 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Group-Level Emotion Recognition Using a Unimodal Privacy-Safe Non-Individual Approach

    Get PDF
    This article presents our unimodal privacy-safe and non-individual proposal for the audio-video group emotion recognition subtask at the Emotion Recognition in the Wild (EmotiW) Challenge 2020 1. This sub challenge aims to classify in the wild videos into three categories: Positive, Neutral and Negative. Recent deep learning models have shown tremendous advances in analyzing interactions between people, predicting human behavior and affective evaluation. Nonetheless, their performance comes from individual-based analysis, which means summing up and averaging scores from individual detections, which inevitably leads to some privacy issues. In this research, we investigated a frugal approach towards a model able to capture the global moods from the whole image without using face or pose detection, or any individual-based feature as input. The proposed methodology mixes state-of-the-art and dedicated synthetic corpora as training sources. With an in-depth exploration of neural network architectures for group-level emotion recognition, we built a VGG-based model achieving 59.13% accuracy on the VGAF test set (eleventh place of the challenge). Given that the analysis is unimodal based only on global features and that the performance is evaluated on a real-world dataset, these results are promising and let us envision extending this model to multimodality for classroom ambiance evaluation, our final target application

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201
    corecore