12,718 research outputs found

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    A flexible architecture for privacy-aware trust management

    Get PDF
    In service-oriented systems a constellation of services cooperate, sharing potentially sensitive information and responsibilities. Cooperation is only possible if the different participants trust each other. As trust may depend on many different factors, in a flexible framework for Trust Management (TM) trust must be computed by combining different types of information. In this paper we describe the TAS3 TM framework which integrates independent TM systems into a single trust decision point. The TM framework supports intricate combinations whilst still remaining easily extensible. It also provides a unified trust evaluation interface to the (authorization framework of the) services. We demonstrate the flexibility of the approach by integrating three distinct TM paradigms: reputation-based TM, credential-based TM, and Key Performance Indicator TM. Finally, we discuss privacy concerns in TM systems and the directions to be taken for the definition of a privacy-friendly TM architecture.\u

    Security Enhancement in Cloud Environment using Secure Secret Key Sharing

    Get PDF
    Securing the data in distributed cloud system is considered one of the major concern for the cloud customers who faces security risks. The data leakage or data tampering are widely used by attackers to extract the private information of other users who shares the confidential data through virtualization. This paper presents Secure Secret Sharing (SSS) technique which is being recognized as one of the leading method to secure the sensitive data. It shares encrypted data over cloud and generated secret key is split into different parts distributed to qualified participants (Qn) only which is analyzed by malicious checkers. It verifies the clients based on their previous performances, whether these users proved to be authorized participant or not. The key computation is evaluated by the Key handler (KH) called trusted party which manages authorized control list, encryption/decryption and reconstruction of key shares. The Lagrange’s interpolation method is used to reconstruct the secret from shares. The experimental results shows that the proposed secure data sharing algorithm not only provides excellent security and performance, but also achieves better key management and data confidentiality than previous countermeasures. It improves the security by using secure VM placement and evaluated based on time consumption and probability computation to prove the efficacy of our algorithm. Experiments are performed on cloudsim based on following parameters i.e. time computation of key generation; response time and encryption/decryption. The experimental results demonstrate that this method can effectively reduce the risks and improves the security and time consumption up to 27.81% and 43.61% over existing algorithms

    Light-Weight Accountable Privacy Preserving Protocol in Cloud Computing Based on a Third-Party Auditor

    Get PDF
    Cloud computing is emerging as the next disruptive utility paradigm [1]. It provides extensive storage capabilities and an environment for application developers through virtual machines. It is also the home of software and databases that are accessible, on-demand. Cloud computing has drastically transformed the way organizations, and individual consumers access and interact with Information Technology. Despite significant advancements in this technology, concerns about security are holding back businesses from fully adopting this promising information technology trend. Third-party auditors (TPAs) are becoming more common in cloud computing implementations. Hence, involving auditors comes with its issues such as trust and processing overhead. To achieve productive auditing, we need to (1) accomplish efficient auditing without requesting the data location or introducing processing overhead to the cloud client; (2) avoid introducing new security vulnerabilities during the auditing process. There are various security models for safeguarding the CCs (Cloud Client) data in the cloud. The TPA systematically examines the evidence of compliance with established security criteria in the connection between the CC and the Cloud Service Provider (CSP). The CSP provides the clients with cloud storage, access to a database coupled with services. Many security models have been elaborated to make the TPA more reliable so that the clients can trust the third-party auditor with their data. Our study shows that involving a TPA might come with its shortcomings, such as trust concerns, extra overhead, security, and data manipulation breaches; as well as additional processing, which leads to the conclusion that a lightweight and secure protocol is paramount to the solution. As defined in [2] privacy-preserving is making sure that the three cloud stakeholders are not involved in any malicious activities coming from insiders at the CSP level, making sure to remediate to TPA vulnerabilities and that the CC is not deceitfully affecting other clients. In our survey phase, we have put into perspective the privacy-preserving solutions as they fit the lightweight requirements in terms of processing and communication costs, ending up by choosing the most prominent ones to compare with them our simulation results. In this dissertation, we introduce a novel method that can detect a dishonest TPA: The Light-weight Accountable Privacy-Preserving (LAPP) Protocol. The lightweight characteristic has been proven simulations as the minor impact of our protocol in terms of processing and communication costs. This protocol determines the malicious behavior of the TPA. To validate our proposed protocol’s effectiveness, we have conducted simulation experiments by using the GreenCloud simulator. Based on our simulation results, we confirm that our proposed model provides better outcomes as compared to the other known contending methods

    The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach

    Full text link
    Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. The new entrants pose the potential risks when they move into the secure zone. To build a door wall that provides safe and secured for the system, many recent research works applied the initial authentication process. However, the majority of the previous articles only focused on the Central Authority (CA) since this leads to an increase in the computation cost and energy consumption for the specific cases on the Internet of Things (IoT). Hence, in this article, we will lessen the importance of these third parties through proposing an enhanced authentication mechanism that includes key management and evaluation based on the past interactions to assist the objects joining a secured area without any nearby CA. We refer to a mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild into a new random dataset larger than the old one. The new one is an input for a simulated authenticating algorithm to observe the communication cost and resource usage of devices. Our proposal helps the authenticating flexible, being strict with unknown devices into the secured zone. The threshold of maximum friends can modify based on the optimization of the symmetric-key algorithm to diminish communication costs (our experimental results compare to previous schemes less than 2000 bits) and raise flexibility in resource-constrained environments.Comment: 27 page

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Intellectual property business protection during a company survival stage : an inside-out approach

    Get PDF
    Lawyers and businessmen work closely together every day. Despite the increasing value of patents and trademarks for companies, it is important to keep in mind that Intellectual Property law and contractual law provide for much more types of protection than statutory rights (patents, trademarks, copyright). Business and company developments are no longer linear. Flexibility plays a key role in the journey a company has to travel to reach success, especially in the case of entrepreneurs and sole proprietorship companies. New businesses going through the "death valley"1 will need to be as flexible as possible to succeed. It is only fair for their attorneys to meet such flexibility standard. For these purposes, understanding different industries, stages of business developments, and Intellectual Property contractual and statutory rights becomes an essential matter to properly asses which kind of protection should and can be used for a particular scenario, on a specific time and on a limited budget. In general terms, Intellectual Property literature presents different types of Intellectual Property management schemes making use of patents, trademarks, design models, copyright, etc. individually considered and mainly referring to statutory or agency granted rights. These mainly and usually refer to case law and /or jurisprudence (as applicable) and international conventions. However, despite the ever increasing number of articles addressing each of these rights, little reference is made to their strategic use within the context of a specific company's business development stage or business needs they are aiming to protect. When reflecting on success cases, not many details are published regarding the "partnership agreements", "employment contracts", "services agreement" entered into by a company, or the Intellectual Property policies implemented by it while developing its business. On the other hand, when addressing the Intellectual Property portfolio, authors seem to refer to patents, trademarks and copyright as the big (or even core) concerns. Consequently, what matters should an entrepreneur identify and address from an Intellectual Property standpoint when starting a business? The most common answer has been: I am just starting and not anywhere near to a patent, so that is not for me. Each Intellectual Property statutory right functions independently, notwithstanding the possibility of using a combination of them. However, these rights can be used for more than one purpose. This dissertation describes the legally granted privileges (focused on patents, trademarks, copyright) and the role these play, just as one of the tools entrepreneurs have to protect their Intellectual Property business. It describes and explains other available contracting tools as part of a comprehensive Intellectual Property protection and business development strategy
    • 

    corecore