850,294 research outputs found

    A group sparsity-driven approach to 3-D action recognition

    Get PDF
    In this paper, a novel 3-D action recognition method based on sparse representation is presented. Silhouette images from multiple cameras are combined to obtain motion history volumes (MHVs). Cylindrical Fourier transform of MHVs is used as action descriptors. We assume that a test sample has a sparse representation in the space of training samples. We cast the action classification problem as an optimization problem and classify actions using group sparsity based on l1 regularization. We show experimental results using the IXMAS multi-view database and demonstratethe superiority of our method, especially when observations are low resolution, occluded, and noisy and when the feature dimension is reduced

    Sparse Linear Models applied to Power Quality Disturbance Classification

    Full text link
    Power quality (PQ) analysis describes the non-pure electric signals that are usually present in electric power systems. The automatic recognition of PQ disturbances can be seen as a pattern recognition problem, in which different types of waveform distortion are differentiated based on their features. Similar to other quasi-stationary signals, PQ disturbances can be decomposed into time-frequency dependent components by using time-frequency or time-scale transforms, also known as dictionaries. These dictionaries are used in the feature extraction step in pattern recognition systems. Short-time Fourier, Wavelets and Stockwell transforms are some of the most common dictionaries used in the PQ community, aiming to achieve a better signal representation. To the best of our knowledge, previous works about PQ disturbance classification have been restricted to the use of one among several available dictionaries. Taking advantage of the theory behind sparse linear models (SLM), we introduce a sparse method for PQ representation, starting from overcomplete dictionaries. In particular, we apply Group Lasso. We employ different types of time-frequency (or time-scale) dictionaries to characterize the PQ disturbances, and evaluate their performance under different pattern recognition algorithms. We show that the SLM reduce the PQ classification complexity promoting sparse basis selection, and improving the classification accuracy
    corecore