2 research outputs found

    Supervised multiview learning based on simultaneous learning of multiview intact and single view classifier

    Full text link
    Multiview learning problem refers to the problem of learning a classifier from multiple view data. In this data set, each data points is presented by multiple different views. In this paper, we propose a novel method for this problem. This method is based on two assumptions. The first assumption is that each data point has an intact feature vector, and each view is obtained by a linear transformation from the intact vector. The second assumption is that the intact vectors are discriminative, and in the intact space, we have a linear classifier to separate the positive class from the negative class. We define an intact vector for each data point, and a view-conditional transformation matrix for each view, and propose to reconstruct the multiple view feature vectors by the product of the corresponding intact vectors and transformation matrices. Moreover, we also propose a linear classifier in the intact space, and learn it jointly with the intact vectors. The learning problem is modeled by a minimization problem, and the objective function is composed of a Cauchy error estimator-based view-conditional reconstruction term over all data points and views, and a classification error term measured by hinge loss over all the intact vectors of all the data points. Some regularization terms are also imposed to different variables in the objective function. The minimization problem is solve by an iterative algorithm using alternate optimization strategy and gradient descent algorithm. The proposed algorithm shows it advantage in the compression to other multiview learning algorithms on benchmark data sets

    Bayesian Optimal Approximate Message Passing to Recover Structured Sparse Signals

    Full text link
    We present a novel compressed sensing recovery algorithm - termed Bayesian Optimal Structured Signal Approximate Message Passing (BOSSAMP) - that jointly exploits the prior distribution and the structured sparsity of a signal that shall be recovered from noisy linear measurements. Structured sparsity is inherent to group sparse and jointly sparse signals. Our algorithm is based on approximate message passing that poses a low complexity recovery algorithm whose Bayesian optimal version allows to specify a prior distribution for each signal component. We utilize this feature in order to establish an iteration-wise extrinsic group update step, in which likelihood ratios of neighboring group elements provide soft information about a specific group element. Doing so, the recovery of structured signals is drastically improved. We derive the extrinsic group update step for a sparse binary and a sparse Gaussian signal prior, where the nonzero entries are either one or Gaussian distributed, respectively. We also explain how BOSSAMP is applicable to arbitrary sparse signals. Simulations demonstrate that our approach exhibits superior performance compared to the current state of the art, while it retains a simple iterative implementation with low computational complexity.Comment: 13 pages, 9 figures, 1 table. Submitted to IEEE Transactions on Signal Processin
    corecore