12,263 research outputs found

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability

    A Voice for the Voiceless: Peer-to-peer Mobile Phone Networks for a Community Radio Service

    Get PDF
    We propose a new application for mobile ad-hoc networks (MANETs) – community radio. We argue how MANETS help overcome important limitations in how community radio is currently operationalized. We identify critical design elements for a MANET based community radio service and propose a broad architecture for the same. We then investigate a most critical issue– the choice of the network wide broadcast protocol for the audio content. We identify desired characteristics of a community radio broadcasting service. We choose and evaluate eight popular broadcasting protocols on these characteristics, to find the protocols most suited for our application.

    Three applications for mobile epidemic algorithms

    Get PDF
    This paper presents a framework for the pervasive sharing of data using wireless networks. 'FarCry' uses the mobility of users to carry files between separated networks. Through a mix of ad-hoc and infrastructure-based wireless networking, files are transferred between users without their direct involvement. As users move to different locations, files are then transmitted on to other users, spreading and sharing information. We examine three applications of this framework. Each of these exploits the physically proximate nature of social gatherings. As people group together in, for example, business meetings and cafés, this can be taken as an indication of similar interests, e.g. in the same presentation or in a type of music. MediaNet affords sharing of media files between strangers or friends, MeetingNet shares business documents in meetings, and NewsNet shares RSS feeds between mobile users. NewsNet also develops the use of pre-emptive caching: collecting information from others not for oneself, but for the predicted later sharing with others. We offer observations on developing this system for a mobile, multi-user, multi-device environment

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Cloud assisted P2P media streaming for bandwidth constrained mobile subscribers

    Get PDF
    Multimedia streaming applications have disruptively occupied bandwidth in wire line Internet, yet today's fledging mobile media streaming still poses many challenges in efficient content distribution due to the form of mobile devices. At the same time, cloud computing is gaining power as a promising technology to transform IT industry and many eminent enterprises are developing their own cloud infrastructures. However, the lack of applications hinders clouds' large-scale implementation. In this paper, we envision a cloud-assisted power-efficient mobile P2P media streaming architecture that addresses the weakness of today's wireless access technologies. Clouds are responsible for storage and computing demanding tasks, and mobile devices colocating with each other share bandwidth and cooperatively stream media content to distribute the load. We first model interactions among mobile devices as a coalition game, and then discuss the optimal chunk retrieval scheduling. Finally, we draw on realistic mobile phone data and utilize an ARIMA model for colocation duration prediction among mobile devices. © 2010 IEEE.published_or_final_versio

    Ad-hoc Stream Adaptive Protocol

    Get PDF
    With the growing market of smart-phones, sophisticated applications that do extensive computation are common on mobile platform; and with consumers’ high expectation of technologies to stay connected on the go, academic researchers and industries have been making efforts to find ways to stream multimedia contents to mobile devices. However, the restricted wireless channel bandwidth, unstable nature of wireless channels, and unpredictable nature of mobility, has been the major road block for wireless streaming advance forward. In this paper, various recent studies on mobility and P2P system proposal are explained and analyzed, and propose a new design based on existing P2P systems, aimed to solve the wireless and mobility issues
    corecore