178,498 research outputs found

    Errors in Veterinary Practice: Preliminary Lessons for Building Better Veterinary Teams

    Get PDF
    Case studies in two typical UK veterinary practices were undertaken to explore teamwork, including interprofessional working. Each study involved one week of whole team observation based on practice locations (reception, operating theatre), one week of shadowing six focus individuals (veterinary surgeons, veterinary nurses and administrators) and a final week consisting of semistructured interviews regarding teamwork. Errors emerged as a finding of the study. The definition of errors was inclusive, pertaining to inputs or omitted actions with potential adverse outcomes for patients, clients or the practice. The 40 identified instances could be grouped into clinical errors (dosing/drugs, surgical preparation, lack of follow-up), lost item errors, and most frequently, communication errors (records, procedures, missing face-to-face communication, mistakes within face-to-face communication). The qualitative nature of the study allowed the underlying cause of the errors to be explored. In addition to some individual mistakes, system faults were identified as a major cause of errors. Observed examples and interviews demonstrated several challenges to interprofessional teamworking which may cause errors, including: lack of time, part-time staff leading to frequent handovers, branch differences and individual veterinary surgeon work preferences. Lessons are drawn for building better veterinary teams and implications for Disciplinary Proceedings considered

    Generalized decoding, effective channels, and simplified security proofs in quantum key distribution

    Full text link
    Prepare and measure quantum key distribution protocols can be decomposed into two basic steps: delivery of the signals over a quantum channel and distillation of a secret key from the signal and measurement records by classical processing and public communication. Here we formalize the distillation process for a general protocol in a purely quantum-mechanical framework and demonstrate that it can be viewed as creating an ``effective'' quantum channel between the legitimate users Alice and Bob. The process of secret key generation can then be viewed as entanglement distribution using this channel, which enables application of entanglement-based security proofs to essentially any prepare and measure protocol. To ensure secrecy of the key, Alice and Bob must be able to estimate the channel noise from errors in the key, and we further show how symmetries of the distillation process simplify this task. Applying this method, we prove the security of several key distribution protocols based on equiangular spherical codes.Comment: 9.1 pages REVTeX. (v3): published version. (v2): revised for improved presentation; content unchange

    Interactive Channel Capacity Revisited

    Full text link
    We provide the first capacity approaching coding schemes that robustly simulate any interactive protocol over an adversarial channel that corrupts any Ï”\epsilon fraction of the transmitted symbols. Our coding schemes achieve a communication rate of 1−O(Ï”log⁥log⁥1/Ï”)1 - O(\sqrt{\epsilon \log \log 1/\epsilon}) over any adversarial channel. This can be improved to 1−O(Ï”)1 - O(\sqrt{\epsilon}) for random, oblivious, and computationally bounded channels, or if parties have shared randomness unknown to the channel. Surprisingly, these rates exceed the 1−Ω(H(Ï”))=1−Ω(Ï”log⁥1/Ï”)1 - \Omega(\sqrt{H(\epsilon)}) = 1 - \Omega(\sqrt{\epsilon \log 1/\epsilon}) interactive channel capacity bound which [Kol and Raz; STOC'13] recently proved for random errors. We conjecture 1−Θ(Ï”log⁥log⁥1/Ï”)1 - \Theta(\sqrt{\epsilon \log \log 1/\epsilon}) and 1−Θ(Ï”)1 - \Theta(\sqrt{\epsilon}) to be the optimal rates for their respective settings and therefore to capture the interactive channel capacity for random and adversarial errors. In addition to being very communication efficient, our randomized coding schemes have multiple other advantages. They are computationally efficient, extremely natural, and significantly simpler than prior (non-capacity approaching) schemes. In particular, our protocols do not employ any coding but allow the original protocol to be performed as-is, interspersed only by short exchanges of hash values. When hash values do not match, the parties backtrack. Our approach is, as we feel, by far the simplest and most natural explanation for why and how robust interactive communication in a noisy environment is possible

    Mixed State Entanglement and Quantum Error Correction

    Get PDF
    Entanglement purification protocols (EPP) and quantum error-correcting codes (QECC) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a mixed state M shared by two parties; with a QECC, an arbi- trary quantum state âˆŁÎŸâŸ©|\xi\rangle can be transmitted at some rate Q through a noisy channel χ\chi without degradation. We prove that an EPP involving one- way classical communication and acting on mixed state M^(χ)\hat{M}(\chi) (obtained by sharing halves of EPR pairs through a channel χ\chi) yields a QECC on χ\chi with rate Q=DQ=D, and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts D1(M)D_1(M) and D2(M)D_2(M) that can be locally distilled from it by EPPs using one- and two-way classical communication respectively, and give an exact expression for E(M)E(M) when MM is Bell-diagonal. While EPPs require classical communica- tion, QECCs do not, and we prove Q is not increased by adding one-way classical communication. However, both D and Q can be increased by adding two-way com- munication. We show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable transmission of quantum states if two-way communication is available, but cannot be used if only one-way com- munication is available. We exhibit a family of codes based on universal hash- ing able toachieve an asymptotic QQ (or DD) of 1-S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5-bit single- error-correcting quantum block code. We prove that {\em iff} a QECC results in high fidelity for the case of no error the QECC can be recast into a form where the encoder is the matrix inverse of the decoder.Comment: Resubmission with various corrections and expansions. See also http://vesta.physics.ucla.edu/~smolin/ for related papers and information. 82 pages latex including 19 postscript figures included using psfig macro

    Distillation Protocols for Mixed States of Multilevel Qubits and the Quantum Renormalization Group

    Get PDF
    We study several properties of distillation protocols to purify multilevel qubit states (qudits) when applied to a certain family of initial mixed bipartite states. We find that it is possible to use qudits states to increase the stability region obtained with the flow equations to distill qubits. In particular, for qutrits we get the phase diagram of the distillation process with a rich structure of fixed points. We investigate the large-DD limit of qudits protocols and find an analytical solution in the continuum limit. The general solution of the distillation recursion relations is presented in an appendix. We stress the notion of weight amplification for distillation protocols as opposed to the quantum amplitude amplification that appears in the Grover algorithm. Likewise, we investigate the relations between quantum distillation and quantum renormalization processes.Comment: REVTEX4 file, 12 pages, 3 tables, color figure

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    • 

    corecore