76 research outputs found

    Oriented coloring on recursively defined digraphs

    Full text link
    Coloring is one of the most famous problems in graph theory. The coloring problem on undirected graphs has been well studied, whereas there are very few results for coloring problems on directed graphs. An oriented k-coloring of an oriented graph G=(V,A) is a partition of the vertex set V into k independent sets such that all the arcs linking two of these subsets have the same direction. The oriented chromatic number of an oriented graph G is the smallest k such that G allows an oriented k-coloring. Deciding whether an acyclic digraph allows an oriented 4-coloring is NP-hard. It follows, that finding the chromatic number of an oriented graph is an NP-hard problem. This motivates to consider the problem on oriented co-graphs. After giving several characterizations for this graph class, we show a linear time algorithm which computes an optimal oriented coloring for an oriented co-graph. We further prove how the oriented chromatic number can be computed for the disjoint union and order composition from the oriented chromatic number of the involved oriented co-graphs. It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of a longest oriented path plus one. We also show that the graph isomorphism problem on oriented co-graphs can be solved in linear time.Comment: 14 page

    Normal 6-edge-colorings of some bridgeless cubic graphs

    Full text link
    In an edge-coloring of a cubic graph, an edge is poor or rich, if the set of colors assigned to the edge and the four edges adjacent it, has exactly five or exactly three distinct colors, respectively. An edge is normal in an edge-coloring if it is rich or poor in this coloring. A normal kk-edge-coloring of a cubic graph is an edge-coloring with kk colors such that each edge of the graph is normal. We denote by χN′(G)\chi'_{N}(G) the smallest kk, for which GG admits a normal kk-edge-coloring. Normal edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. It is known that proving χN′(G)≤5\chi'_{N}(G)\leq 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture. Moreover, Jaeger was able to show that it implies classical conjectures like Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Recently, two of the authors were able to show that any simple cubic graph admits a normal 77-edge-coloring, and this result is best possible. In the present paper, we show that any claw-free bridgeless cubic graph, permutation snark, tree-like snark admits a normal 66-edge-coloring. Finally, we show that any bridgeless cubic graph GG admits a 66-edge-coloring such that at least 79⋅∣E∣\frac{7}{9}\cdot |E| edges of GG are normal.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with arXiv:1804.0944

    Track Layouts of Graphs

    Get PDF
    A \emph{(k,t)(k,t)-track layout} of a graph GG consists of a (proper) vertex tt-colouring of GG, a total order of each vertex colour class, and a (non-proper) edge kk-colouring such that between each pair of colour classes no two monochromatic edges cross. This structure has recently arisen in the study of three-dimensional graph drawings. This paper presents the beginnings of a theory of track layouts. First we determine the maximum number of edges in a (k,t)(k,t)-track layout, and show how to colour the edges given fixed linear orderings of the vertex colour classes. We then describe methods for the manipulation of track layouts. For example, we show how to decrease the number of edge colours in a track layout at the expense of increasing the number of tracks, and vice versa. We then study the relationship between track layouts and other models of graph layout, namely stack and queue layouts, and geometric thickness. One of our principle results is that the queue-number and track-number of a graph are tied, in the sense that one is bounded by a function of the other. As corollaries we prove that acyclic chromatic number is bounded by both queue-number and stack-number. Finally we consider track layouts of planar graphs. While it is an open problem whether planar graphs have bounded track-number, we prove bounds on the track-number of outerplanar graphs, and give the best known lower bound on the track-number of planar graphs.Comment: The paper is submitted for publication. Preliminary draft appeared as Technical Report TR-2003-07, School of Computer Science, Carleton University, Ottawa, Canad

    To Prove Four Color Theorem

    Full text link
    In this paper, we give a proof for four color theorem(four color conjecture). Our proof does not involve computer assistance and the most important is that it can be generalized to prove Hadwiger Conjecture. Moreover, we give algorithms to color and test planarity of planar graphs, which can be generalized to graphs containing Kx(x>5)K_x(x>5) minor. There are four parts of this paper: Part-1: To Prove Four Color Theorem Part-2: An Equivalent Statement of Hadwiger Conjecture when k=5k=5 Part-3: A New Proof of Wagner's Equivalence Theorem Part-4: A Geometric View of Outerplanar GraphComment: The paper is further reduced, and each part is more self-contained, is the fina

    Trees with Certain Locating-chromatic Number

    Get PDF
    The locating-chromatic number of a graph G can be defined as the cardinality of a minimum resolving partition of the vertex set V(G) such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in G are not contained in the same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of the distances of v to all partition classes. This concept is a special case of the graph partition dimension notion. Previous authors have characterized all graphs of order n with locating-chromatic number either n or n-1. They also proved that there exists a tree of order n, n≥5, having locating-chromatic number k if and only if k âˆˆ{3,4,"¦,n-2,n}. In this paper, we characterize all trees of order n with locating-chromatic number n - t, for any integers n and t, where n > t+3 and 2 ≤ t < n/2

    Inductive Construction of 2-Connected Graphs for Calculating the Virial Coefficients

    Full text link
    In this paper we give a method for constructing systematically all simple 2-connected graphs with n vertices from the set of simple 2-connected graphs with n-1 vertices, by means of two operations: subdivision of an edge and addition of a vertex. The motivation of our study comes from the theory of non-ideal gases and, more specifically, from the virial equation of state. It is a known result of Statistical Mechanics that the coefficients in the virial equation of state are sums over labelled 2-connected graphs. These graphs correspond to clusters of particles. Thus, theoretically, the virial coefficients of any order can be calculated by means of 2-connected graphs used in the virial coefficient of the previous order. Our main result gives a method for constructing inductively all simple 2-connected graphs, by induction on the number of vertices. Moreover, the two operations we are using maintain the correspondence between graphs and clusters of particles.Comment: 23 pages, 5 figures, 3 table
    • …
    corecore