189,635 research outputs found
International Ultraviolet Explorer (IUE) Post Launch Report 2
The International Ultraviolet Explorer (IUE), an Explorer class ultraviolet astronomy mission, is an international cooperative program between the United States, the United Kingdom (UK), and the European Space Agency (ESA) which provides for a single launch into geosynchronous orbit to conduct spectral distribution studies of celestial and solar system ultraviolet sources. The spacecraft and scientific instruments were designed and fabricated at the Goddard Space Flight Center. The spectrograph camera was provided by the UK; ESA provided the solar array as well as the European ground station. The IUE observatory system was designed to functionally resemble a ground-based optical observatory at which guest observers could execute observing programs in real time. Observatory performance substantially exceeded design and mission objectives. The secondary mission objectives were also met
Cherenkov Telescope Array: The next-generation ground-based gamma-ray observatory
High energy gamma-ray astronomy is a newly emerging and very successful
branch of astronomy and astrophysics. Exciting results have been obtained by
the current generation Cherenkov telescope systems such as H.E.S.S., MAGIC,
VERITAS and CANGAROO. The H.E.S.S. survey of the galactic plane has revealed a
large number of sources and addresses issues such as the question about the
origin of cosmic rays. The detection of very high energy emission from
extragalactic sources at large distances has provided insights in the star
formation during the history of the universe and in the understanding of active
galactic nuclei. The development of the very large Cherenkov telescope array
system (CTA) with a sensitivity about an order of magnitude better than current
instruments and significantly improved sensitivity is under intense discussion.
This observatory will reveal an order of magnitude more sources and due to its
higher sensitivity and angular resolution it will be able to detect new classes
of objects and phenomena that have not been visible until now. A combination of
different telescope types will provide the sensitivity needed in different
energy ranges.Comment: 4 pages, 3 figures, to appear in the proceedings of the 30th
International Cosmic Ray Conference, Merida, July 200
Artificial intelligence approaches to astronomical observation scheduling
Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope
Detection of 6 November 1997 ground level event by Milagrito
Solar Energetic Particles (SEPs) with energies exceeding 10 GeV associated with the 6 November 1997 solar flare/CME (coronal mass ejection) have been detected with Milagrito, a prototype of the Milagro Gamma Ray Observatory. While SEP acceleration beyond 1 GeV is well established, few data exist for protons or ions beyond 10 GeV. The Milagro observatory, a ground based water Cherenkov detector designed for observing very high energy gamma ray sources, can also be used to study the Sun. Milagrito, which operated for approximately one year in 1997/98, was sensitive to solar proton and neutron fluxes above ∼4 GeV. In its scaler mode, Milagrito registered a rate increase coincident with the 6 November 1997 ground level event observed by Climax and other neutron monitors. A preliminary analysis suggests the presence of \u3e10 GeV particles
Interferometry
The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed
Celescope catalog of ultraviolet stellar observations. Magnetic tape version
Observational results obtained by the celescope experiment during the first 16 months of operation of NASA's Orbiting Astronomical Observatory are presented. Results of the stellar observations are listed along with selected ground-based information obtained from the available literature
Far infrared supplement: Catalog of infrared observations
The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965
A Site Evaluation Campaign for a Ground Based Atmospheric Cherenkov Telescope in Romania
Around the world, several scientific projects share the interest of a global
network of small Cherenkov telescopes for monitoring observations of the
brightest blazars - the DWARF network. A small, ground based, imaging
atmospheric Cherenkov telescope of last generation is intended to be installed
and operated in Romania as a component of the DWARF network. To prepare the
construction of the observatory, two support projects have been initiated.
Within the framework of these projects, we have assessed a number of possible
sites where to settle the observatory. In this paper we submit a brief report
on the general characteristics of the best four sites selected after the local
infrastructure, the nearby facilities and the social impact criteria have been
applied.Comment: 6 pages, 5 Postscript figure
- …
