3,003 research outputs found

    Deep Convolutional Ranking for Multilabel Image Annotation

    Full text link
    Multilabel image annotation is one of the most important challenges in computer vision with many real-world applications. While existing work usually use conventional visual features for multilabel annotation, features based on Deep Neural Networks have shown potential to significantly boost performance. In this work, we propose to leverage the advantage of such features and analyze key components that lead to better performances. Specifically, we show that a significant performance gain could be obtained by combining convolutional architectures with approximate top-kk ranking objectives, as thye naturally fit the multilabel tagging problem. Our experiments on the NUS-WIDE dataset outperforms the conventional visual features by about 10%, obtaining the best reported performance in the literature

    No Spare Parts: Sharing Part Detectors for Image Categorization

    Get PDF
    This work aims for image categorization using a representation of distinctive parts. Different from existing part-based work, we argue that parts are naturally shared between image categories and should be modeled as such. We motivate our approach with a quantitative and qualitative analysis by backtracking where selected parts come from. Our analysis shows that in addition to the category parts defining the class, the parts coming from the background context and parts from other image categories improve categorization performance. Part selection should not be done separately for each category, but instead be shared and optimized over all categories. To incorporate part sharing between categories, we present an algorithm based on AdaBoost to jointly optimize part sharing and selection, as well as fusion with the global image representation. We achieve results competitive to the state-of-the-art on object, scene, and action categories, further improving over deep convolutional neural networks

    Visual Search at eBay

    Full text link
    In this paper, we propose a novel end-to-end approach for scalable visual search infrastructure. We discuss the challenges we faced for a massive volatile inventory like at eBay and present our solution to overcome those. We harness the availability of large image collection of eBay listings and state-of-the-art deep learning techniques to perform visual search at scale. Supervised approach for optimized search limited to top predicted categories and also for compact binary signature are key to scale up without compromising accuracy and precision. Both use a common deep neural network requiring only a single forward inference. The system architecture is presented with in-depth discussions of its basic components and optimizations for a trade-off between search relevance and latency. This solution is currently deployed in a distributed cloud infrastructure and fuels visual search in eBay ShopBot and Close5. We show benchmark on ImageNet dataset on which our approach is faster and more accurate than several unsupervised baselines. We share our learnings with the hope that visual search becomes a first class citizen for all large scale search engines rather than an afterthought.Comment: To appear in 23rd SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2017. A demonstration video can be found at https://youtu.be/iYtjs32vh4
    • …
    corecore