18,871 research outputs found

    The asymptotic behaviour of the exact and approximative ν=1/2\nu=1/2 Chern-Simons Green's functions

    Full text link
    We consider the asymptotic behaviour of the Chern-Simons Green's function of the ν=1/ϕ~\nu=1/\tilde{\phi} system for an infinite area in position-time representation. We calculate explicitly the asymptotic form of the Green's function of the interaction free Chern-Simons system for small times. The calculated Green's function vanishes exponentially with the logarithm of the area. Furthermore, we discuss the form of the divergence for all τ\tau and also for the Coulomb interacting Chern-Simons system. We compare the asymptotics of the exact Chern-Simons Green's function with the asymptotics of the Green's function in the Hartree-Fock as well as the random-phase approximation (RPA). The asymptotics of Hartree-Fock the Green's function corresponds well with the exact Green's function. In the case of the RPA Green's function we do not get the correct asymptotics. At last, we calculate the self consistent Hartree-Fock Green's function.Comment: 12 Revtex pages, 1 eps figure, using style files pst-feyn.sty, pst-key.sty, typos correcte

    Universal behavior of quantum Green's functions

    Full text link
    We consider a general one-particle Hamiltonian H = - \Delta_r + u(r) defined in a d-dimensional domain. The object of interest is the time-independent Green function G_z(r,r') = . Recently, in one dimension (1D), the Green's function problem was solved explicitly in inverse form, with diagonal elements of Green's function as prescribed variables. The first aim of this paper is to extract from the 1D inverse solution such information about Green's function which cannot be deduced directly from its definition. Among others, this information involves universal, i.e. u(r)-independent, behavior of Green's function close to the domain boundary. The second aim is to extend the inverse formalism to higher dimensions, especially to 3D, and to derive the universal form of Green's function for various shapes of the confining domain boundary.Comment: 46 pages, the shortened version submitted to J. Math. Phy

    Strongly Correlated Topological Superconductors and Topological Phase Transitions via Green's Function

    Full text link
    We propose several topological order parameters expressed in terms of Green's function at zero frequency for topological superconductors, which generalizes the previous work for interacting insulators. The coefficient in topological field theory is expressed in terms of zero frequency Green's function. We also study topological phase transition beyond noninteracting limit in this zero frequency Green's function approach.Comment: 10 pages. Published versio

    Green's function for gravitational waves in FRW spacetimes

    Full text link
    A method for calculating the retarded Green's function for the gravitational wave equation in Friedmann-Roberson-Walker spacetimes, within the formalism of linearized Einstein gravity is developed. Hadamard's general solution to Cauchy's problem for second-order, linear partial differential equations is applied to the FRW gravitational wave equation. The retarded Green's function may be calculated for any FRW spacetime, with curved or flat spatial sections, for which the functional form of the Ricci scalar curvature RR is known. The retarded Green's function for gravitational waves propagating through a cosmological fluid composed of both radiation and dust is calculated analytically for the first time. It is also shown that for all FRW spacetimes in which the Ricci scalar curvatures does not vanish, R≠0R \neq 0, the Green's function violates Huygens' principle; the Green's function has support inside the light-cone due to the scatter of gravitational waves off the background curvature.Comment: 9 pages, FERMILAB-Pub-93/189-
    • …
    corecore