133,473 research outputs found

    Adding Isolated Vertices Makes some Online Algorithms Optimal

    Full text link
    An unexpected difference between online and offline algorithms is observed. The natural greedy algorithms are shown to be worst case online optimal for Online Independent Set and Online Vertex Cover on graphs with 'enough' isolated vertices, Freckle Graphs. For Online Dominating Set, the greedy algorithm is shown to be worst case online optimal on graphs with at least one isolated vertex. These algorithms are not online optimal in general. The online optimality results for these greedy algorithms imply optimality according to various worst case performance measures, such as the competitive ratio. It is also shown that, despite this worst case optimality, there are Freckle graphs where the greedy independent set algorithm is objectively less good than another algorithm. It is shown that it is NP-hard to determine any of the following for a given graph: the online independence number, the online vertex cover number, and the online domination number.Comment: A footnote in the .tex file didn't show up in the last version. This was fixe

    Info-Greedy sequential adaptive compressed sensing

    Full text link
    We present an information-theoretic framework for sequential adaptive compressed sensing, Info-Greedy Sensing, where measurements are chosen to maximize the extracted information conditioned on the previous measurements. We show that the widely used bisection approach is Info-Greedy for a family of kk-sparse signals by connecting compressed sensing and blackbox complexity of sequential query algorithms, and present Info-Greedy algorithms for Gaussian and Gaussian Mixture Model (GMM) signals, as well as ways to design sparse Info-Greedy measurements. Numerical examples demonstrate the good performance of the proposed algorithms using simulated and real data: Info-Greedy Sensing shows significant improvement over random projection for signals with sparse and low-rank covariance matrices, and adaptivity brings robustness when there is a mismatch between the assumed and the true distributions.Comment: Preliminary results presented at Allerton Conference 2014. To appear in IEEE Journal Selected Topics on Signal Processin

    Greedy algorithms and poset matroids

    Full text link
    We generalize the matroid-theoretic approach to greedy algorithms to the setting of poset matroids, in the sense of Barnabei, Nicoletti and Pezzoli (1998) [BNP]. We illustrate our result by providing a generalization of Kruskal algorithm (which finds a minimum spanning subtree of a weighted graph) to abstract simplicial complexes

    Synchronized sweep algorithms for scalable scheduling constraints

    Get PDF
    This report introduces a family of synchronized sweep based filtering algorithms for handling scheduling problems involving resource and precedence constraints. The key idea is to filter all constraints of a scheduling problem in a synchronized way in order to scale better. In addition to normal filtering mode, the algorithms can run in greedy mode, in which case they perform a greedy assignment of start and end times. The filtering mode achieves a significant speed-up over the decomposition into independent cumulative and precedence constraints, while the greedy mode can handle up to 1 million tasks with 64 resources constraints and 2 million precedences. These algorithms were implemented in both CHOCO and SICStus

    Greedy algorithms for high-dimensional eigenvalue problems

    Full text link
    In this article, we present two new greedy algorithms for the computation of the lowest eigenvalue (and an associated eigenvector) of a high-dimensional eigenvalue problem, and prove some convergence results for these algorithms and their orthogonalized versions. The performance of our algorithms is illustrated on numerical test cases (including the computation of the buckling modes of a microstructured plate), and compared with that of another greedy algorithm for eigenvalue problems introduced by Ammar and Chinesta.Comment: 33 pages, 5 figure

    Scalable Greedy Algorithms for Transfer Learning

    Full text link
    In this paper we consider the binary transfer learning problem, focusing on how to select and combine sources from a large pool to yield a good performance on a target task. Constraining our scenario to real world, we do not assume the direct access to the source data, but rather we employ the source hypotheses trained from them. We propose an efficient algorithm that selects relevant source hypotheses and feature dimensions simultaneously, building on the literature on the best subset selection problem. Our algorithm achieves state-of-the-art results on three computer vision datasets, substantially outperforming both transfer learning and popular feature selection baselines in a small-sample setting. We also present a randomized variant that achieves the same results with the computational cost independent from the number of source hypotheses and feature dimensions. Also, we theoretically prove that, under reasonable assumptions on the source hypotheses, our algorithm can learn effectively from few examples
    corecore