133,473 research outputs found
Adding Isolated Vertices Makes some Online Algorithms Optimal
An unexpected difference between online and offline algorithms is observed.
The natural greedy algorithms are shown to be worst case online optimal for
Online Independent Set and Online Vertex Cover on graphs with 'enough' isolated
vertices, Freckle Graphs. For Online Dominating Set, the greedy algorithm is
shown to be worst case online optimal on graphs with at least one isolated
vertex. These algorithms are not online optimal in general. The online
optimality results for these greedy algorithms imply optimality according to
various worst case performance measures, such as the competitive ratio. It is
also shown that, despite this worst case optimality, there are Freckle graphs
where the greedy independent set algorithm is objectively less good than
another algorithm. It is shown that it is NP-hard to determine any of the
following for a given graph: the online independence number, the online vertex
cover number, and the online domination number.Comment: A footnote in the .tex file didn't show up in the last version. This
was fixe
Info-Greedy sequential adaptive compressed sensing
We present an information-theoretic framework for sequential adaptive
compressed sensing, Info-Greedy Sensing, where measurements are chosen to
maximize the extracted information conditioned on the previous measurements. We
show that the widely used bisection approach is Info-Greedy for a family of
-sparse signals by connecting compressed sensing and blackbox complexity of
sequential query algorithms, and present Info-Greedy algorithms for Gaussian
and Gaussian Mixture Model (GMM) signals, as well as ways to design sparse
Info-Greedy measurements. Numerical examples demonstrate the good performance
of the proposed algorithms using simulated and real data: Info-Greedy Sensing
shows significant improvement over random projection for signals with sparse
and low-rank covariance matrices, and adaptivity brings robustness when there
is a mismatch between the assumed and the true distributions.Comment: Preliminary results presented at Allerton Conference 2014. To appear
in IEEE Journal Selected Topics on Signal Processin
Greedy algorithms and poset matroids
We generalize the matroid-theoretic approach to greedy algorithms to the
setting of poset matroids, in the sense of Barnabei, Nicoletti and Pezzoli
(1998) [BNP]. We illustrate our result by providing a generalization of Kruskal
algorithm (which finds a minimum spanning subtree of a weighted graph) to
abstract simplicial complexes
Synchronized sweep algorithms for scalable scheduling constraints
This report introduces a family of synchronized sweep based filtering
algorithms for handling scheduling problems involving resource and
precedence constraints. The key idea is to filter all constraints of a
scheduling problem in a synchronized way in order to scale better. In
addition to normal filtering mode, the algorithms can run in greedy
mode, in which case they perform a greedy assignment of start and end
times. The filtering mode achieves a significant speed-up over the
decomposition into independent cumulative and precedence constraints,
while the greedy mode can handle up to 1 million tasks with 64 resources
constraints and 2 million precedences. These algorithms were implemented
in both CHOCO and SICStus
Greedy algorithms for high-dimensional eigenvalue problems
In this article, we present two new greedy algorithms for the computation of
the lowest eigenvalue (and an associated eigenvector) of a high-dimensional
eigenvalue problem, and prove some convergence results for these algorithms and
their orthogonalized versions. The performance of our algorithms is illustrated
on numerical test cases (including the computation of the buckling modes of a
microstructured plate), and compared with that of another greedy algorithm for
eigenvalue problems introduced by Ammar and Chinesta.Comment: 33 pages, 5 figure
Scalable Greedy Algorithms for Transfer Learning
In this paper we consider the binary transfer learning problem, focusing on
how to select and combine sources from a large pool to yield a good performance
on a target task. Constraining our scenario to real world, we do not assume the
direct access to the source data, but rather we employ the source hypotheses
trained from them. We propose an efficient algorithm that selects relevant
source hypotheses and feature dimensions simultaneously, building on the
literature on the best subset selection problem. Our algorithm achieves
state-of-the-art results on three computer vision datasets, substantially
outperforming both transfer learning and popular feature selection baselines in
a small-sample setting. We also present a randomized variant that achieves the
same results with the computational cost independent from the number of source
hypotheses and feature dimensions. Also, we theoretically prove that, under
reasonable assumptions on the source hypotheses, our algorithm can learn
effectively from few examples
- …
