8,419 research outputs found

    Denoising Deep Neural Networks Based Voice Activity Detection

    Full text link
    Recently, the deep-belief-networks (DBN) based voice activity detection (VAD) has been proposed. It is powerful in fusing the advantages of multiple features, and achieves the state-of-the-art performance. However, the deep layers of the DBN-based VAD do not show an apparent superiority to the shallower layers. In this paper, we propose a denoising-deep-neural-network (DDNN) based VAD to address the aforementioned problem. Specifically, we pre-train a deep neural network in a special unsupervised denoising greedy layer-wise mode, and then fine-tune the whole network in a supervised way by the common back-propagation algorithm. In the pre-training phase, we take the noisy speech signals as the visible layer and try to extract a new feature that minimizes the reconstruction cross-entropy loss between the noisy speech signals and its corresponding clean speech signals. Experimental results show that the proposed DDNN-based VAD not only outperforms the DBN-based VAD but also shows an apparent performance improvement of the deep layers over shallower layers.Comment: This paper has been accepted by IEEE ICASSP-2013, and will be published online after May, 201

    ForestHash: Semantic Hashing With Shallow Random Forests and Tiny Convolutional Networks

    Full text link
    Hash codes are efficient data representations for coping with the ever growing amounts of data. In this paper, we introduce a random forest semantic hashing scheme that embeds tiny convolutional neural networks (CNN) into shallow random forests, with near-optimal information-theoretic code aggregation among trees. We start with a simple hashing scheme, where random trees in a forest act as hashing functions by setting `1' for the visited tree leaf, and `0' for the rest. We show that traditional random forests fail to generate hashes that preserve the underlying similarity between the trees, rendering the random forests approach to hashing challenging. To address this, we propose to first randomly group arriving classes at each tree split node into two groups, obtaining a significantly simplified two-class classification problem, which can be handled using a light-weight CNN weak learner. Such random class grouping scheme enables code uniqueness by enforcing each class to share its code with different classes in different trees. A non-conventional low-rank loss is further adopted for the CNN weak learners to encourage code consistency by minimizing intra-class variations and maximizing inter-class distance for the two random class groups. Finally, we introduce an information-theoretic approach for aggregating codes of individual trees into a single hash code, producing a near-optimal unique hash for each class. The proposed approach significantly outperforms state-of-the-art hashing methods for image retrieval tasks on large-scale public datasets, while performing at the level of other state-of-the-art image classification techniques while utilizing a more compact and efficient scalable representation. This work proposes a principled and robust procedure to train and deploy in parallel an ensemble of light-weight CNNs, instead of simply going deeper.Comment: Accepted to ECCV 201
    • …
    corecore