12 research outputs found

    Relaxed Schedulers Can Efficiently Parallelize Iterative Algorithms

    Full text link
    There has been significant progress in understanding the parallelism inherent to iterative sequential algorithms: for many classic algorithms, the depth of the dependence structure is now well understood, and scheduling techniques have been developed to exploit this shallow dependence structure for efficient parallel implementations. A related, applied research strand has studied methods by which certain iterative task-based algorithms can be efficiently parallelized via relaxed concurrent priority schedulers. These allow for high concurrency when inserting and removing tasks, at the cost of executing superfluous work due to the relaxed semantics of the scheduler. In this work, we take a step towards unifying these two research directions, by showing that there exists a family of relaxed priority schedulers that can efficiently and deterministically execute classic iterative algorithms such as greedy maximal independent set (MIS) and matching. Our primary result shows that, given a randomized scheduler with an expected relaxation factor of kk in terms of the maximum allowed priority inversions on a task, and any graph on nn vertices, the scheduler is able to execute greedy MIS with only an additive factor of poly(kk) expected additional iterations compared to an exact (but not scalable) scheduler. This counter-intuitive result demonstrates that the overhead of relaxation when computing MIS is not dependent on the input size or structure of the input graph. Experimental results show that this overhead can be clearly offset by the gain in performance due to the highly scalable scheduler. In sum, we present an efficient method to deterministically parallelize iterative sequential algorithms, with provable runtime guarantees in terms of the number of executed tasks to completion.Comment: PODC 2018, pages 377-386 in proceeding

    Scalable Facility Location for Massive Graphs on Pregel-like Systems

    Full text link
    We propose a new scalable algorithm for facility location. Facility location is a classic problem, where the goal is to select a subset of facilities to open, from a set of candidate facilities F , in order to serve a set of clients C. The objective is to minimize the total cost of opening facilities plus the cost of serving each client from the facility it is assigned to. In this work, we are interested in the graph setting, where the cost of serving a client from a facility is represented by the shortest-path distance on the graph. This setting allows to model natural problems arising in the Web and in social media applications. It also allows to leverage the inherent sparsity of such graphs, as the input is much smaller than the full pairwise distances between all vertices. To obtain truly scalable performance, we design a parallel algorithm that operates on clusters of shared-nothing machines. In particular, we target modern Pregel-like architectures, and we implement our algorithm on Apache Giraph. Our solution makes use of a recent result to build sketches for massive graphs, and of a fast parallel algorithm to find maximal independent sets, as building blocks. In so doing, we show how these problems can be solved on a Pregel-like architecture, and we investigate the properties of these algorithms. Extensive experimental results show that our algorithm scales gracefully to graphs with billions of edges, while obtaining values of the objective function that are competitive with a state-of-the-art sequential algorithm

    Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable

    Full text link
    There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the optimizations and techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph-Based Benchmark Suite (GBBS).Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    Parallel Graph Algorithms in Constant Adaptive Rounds: Theory meets Practice

    Full text link
    We study fundamental graph problems such as graph connectivity, minimum spanning forest (MSF), and approximate maximum (weight) matching in a distributed setting. In particular, we focus on the Adaptive Massively Parallel Computation (AMPC) model, which is a theoretical model that captures MapReduce-like computation augmented with a distributed hash table. We show the first AMPC algorithms for all of the studied problems that run in a constant number of rounds and use only O(nϵ)O(n^\epsilon) space per machine, where 0<ϵ<10 < \epsilon < 1. Our results improve both upon the previous results in the AMPC model, as well as the best-known results in the MPC model, which is the theoretical model underpinning many popular distributed computation frameworks, such as MapReduce, Hadoop, Beam, Pregel and Giraph. Finally, we provide an empirical comparison of the algorithms in the MPC and AMPC models in a fault-tolerant distriubted computation environment. We empirically evaluate our algorithms on a set of large real-world graphs and show that our AMPC algorithms can achieve improvements in both running time and round-complexity over optimized MPC baselines

    Ordering heuristics for parallel graph coloring

    Full text link
    This paper introduces the largest-log-degree-first (LLF) and smallest-log-degree-last (SLL) ordering heuristics for paral-lel greedy graph-coloring algorithms, which are inspired by the largest-degree-first (LF) and smallest-degree-last (SL) serial heuristics, respectively. We show that although LF and SL, in prac-tice, generate colorings with relatively small numbers of colors, they are vulnerable to adversarial inputs for which any paralleliza-tion yields a poor parallel speedup. In contrast, LLF and SLL allow for provably good speedups on arbitrary inputs while, in practice, producing colorings of competitive quality to their serial analogs. We applied LLF and SLL to the parallel greedy coloring algo-rithm introduced by Jones and Plassmann, referred to here as JP. Jones and Plassman analyze the variant of JP that processes the ver-tices of a graph in a random order, and show that on an O(1)-degree graph G = (V,E), this JP-R variant has an expected parallel run-ning time of O(lgV / lg lgV) in a PRAM model. We improve this bound to show, using work-span analysis, that JP-R, augmented to handle arbitrary-degree graphs, colors a graph G = (V,E) with degree ∆ using Θ(V +E) work and O(lgV + lg ∆ ·min{√E,∆+ lg ∆ lgV / lg lgV}) expected span. We prove that JP-LLF and JP-SLL — JP using the LLF and SLL heuristics, respectively — execute with the same asymptotic work as JP-R and only logarith-mically more span while producing higher-quality colorings than JP-R in practice. We engineered an efficient implementation of JP for modern shared-memory multicore computers and evaluated its performance on a machine with 12 Intel Core-i7 (Nehalem) processor cores. Our implementation of JP-LLF achieves a geometric-mean speedup of 7.83 on eight real-world graphs and a geometric-mean speedup of 8.08 on ten synthetic graphs, while our implementation using SLL achieves a geometric-mean speedup of 5.36 on these real-world graphs and a geometric-mean speedup of 7.02 on these synthetic graphs. Furthermore, on one processor, JP-LLF is slightly faster than a well-engineered serial greedy algorithm using LF, and like-wise, JP-SLL is slightly faster than the greedy algorithm using SL
    corecore