60 research outputs found

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    Generalizing Reduction-Based Algebraic Multigrid

    Full text link
    Algebraic Multigrid (AMG) methods are often robust and effective solvers for solving the large and sparse linear systems that arise from discretized PDEs and other problems, relying on heuristic graph algorithms to achieve their performance. Reduction-based AMG (AMGr) algorithms attempt to formalize these heuristics by providing two-level convergence bounds that depend concretely on properties of the partitioning of the given matrix into its fine- and coarse-grid degrees of freedom. MacLachlan and Saad (SISC 2007) proved that the AMGr method yields provably robust two-level convergence for symmetric and positive-definite matrices that are diagonally dominant, with a convergence factor bounded as a function of a coarsening parameter. However, when applying AMGr algorithms to matrices that are not diagonally dominant, not only do the convergence factor bounds not hold, but measured performance is notably degraded. Here, we present modifications to the classical AMGr algorithm that improve its performance on matrices that are not diagonally dominant, making use of strength of connection, sparse approximate inverse (SPAI) techniques, and interpolation truncation and rescaling, to improve robustness while maintaining control of the algorithmic costs. We present numerical results demonstrating the robustness of this approach for both classical isotropic diffusion problems and for non-diagonally dominant systems coming from anisotropic diffusion

    Multilevel Solvers for Unstructured Surface Meshes

    Full text link

    Multiscale approach for the network compression-friendly ordering

    Full text link
    We present a fast multiscale approach for the network minimum logarithmic arrangement problem. This type of arrangement plays an important role in a network compression and fast node/link access operations. The algorithm is of linear complexity and exhibits good scalability which makes it practical and attractive for using on large-scale instances. Its effectiveness is demonstrated on a large set of real-life networks. These networks with corresponding best-known minimization results are suggested as an open benchmark for a research community to evaluate new methods for this problem

    Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing

    Full text link

    On local Fourier analysis of multigrid methods for PDEs with jumping and random coefficients

    Get PDF
    In this paper, we propose a novel non-standard Local Fourier Analysis (LFA) variant for accurately predicting the multigrid convergence of problems with random and jumping coefficients. This LFA method is based on a specific basis of the Fourier space rather than the commonly used Fourier modes. To show the utility of this analysis, we consider, as an example, a simple cell-centered multigrid method for solving a steady-state single phase flow problem in a random porous medium. We successfully demonstrate the prediction capability of the proposed LFA using a number of challenging benchmark problems. The information provided by this analysis helps us to estimate a-priori the time needed for solving certain uncertainty quantification problems by means of a multigrid multilevel Monte Carlo method

    Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations

    Get PDF
    We consider a framework for the construction of iterative schemes for operator equations that combine low-rank approximation in tensor formats and adaptive approximation in a basis. Under fairly general assumptions, we obtain a rigorous convergence analysis, where all parameters required for the execution of the methods depend only on the underlying infinite-dimensional problem, but not on a concrete discretization. Under certain assumptions on the rates for the involved low-rank approximations and basis expansions, we can also give bounds on the computational complexity of the iteration as a function of the prescribed target error. Our theoretical findings are illustrated and supported by computational experiments. These demonstrate that problems in very high dimensions can be treated with controlled solution accuracy.Comment: 51 page
    • …
    corecore