1,402 research outputs found

    Models and heuristics for robust resource allocation in parallel and distributed computing systems

    Get PDF
    Includes bibliographical references.This is an overview of the robust resource allocation research efforts that have been and continue to be conducted by the CSU Robustness in Computer Systems Group. Parallel and distributed computing systems, consisting of a (usually heterogeneous) set of machines and networks, frequently operate in environments where delivered performance degrades due to unpredictable circumstances. Such unpredictability can be the result of sudden machine failures, increases in system load, or errors caused by inaccurate initial estimation. The research into developing models and heuristics for parallel and distributed computing systems that create robust resource allocations is presented.This research was supported by NSF under grant No. CNS-0615170 and by the Colorado State University George T. Abell Endowment

    Robust resource allocation in weather data processing systems

    Get PDF
    Includes bibliographical references (pages [9-10]).Reliability of weather data processing systems is of prime importance to ensure the efficient operation of space-based weather monitoring systems. This work defines a heterogeneous weather data processing system that is susceptible to uncertainties in data set arrival times. The resource allocation must be robust with respect to these uncertainties. The tasks to be executed by the data processing system are classified into three broad categories: telemetry, tracking and control (high priority); data processing (medium priority); and data research (low priority).The high priority tasks must be completed before considering medium and low priority tasks. The goal of this research is to find a resource allocation that minimizes makespan of the high priority tasks, and to find a mapping that maximizes a function of the completion time and priority of the medium and low priority tasks. Different heuristic techniques to find near optimal solutions are studied, and their performance is evaluated

    Robust Resource Allocation Techniques on Homogeneous Distributed System

    Get PDF
    Distributed computing systems utilize various resources with different capabilities to satisfy the requirements of diverse task mixtures and to maximize the system performance. Such systems often operate in an environment where certain desired performance features degrade due to unpredictable circumstances, such as higher than expected work load or inaccuracies in the estimation of task and system parameters. Thus, when resources are allocated to tasks it is desirable to do this in a way that makes the system performance on these tasks robust against unpredictable changes. The system is considered robust if the actual makespan under the perturbed conditions does not exceed the required time constraint. The goal is to maximize the collective allowable error in execution time estimation for the tasks that can occur without the makespan exceeding the constraint

    Information Acquisition with Sensing Robots: Algorithms and Error Bounds

    Full text link
    Utilizing the capabilities of configurable sensing systems requires addressing difficult information gathering problems. Near-optimal approaches exist for sensing systems without internal states. However, when it comes to optimizing the trajectories of mobile sensors the solutions are often greedy and rarely provide performance guarantees. Notably, under linear Gaussian assumptions, the problem becomes deterministic and can be solved off-line. Approaches based on submodularity have been applied by ignoring the sensor dynamics and greedily selecting informative locations in the environment. This paper presents a non-greedy algorithm with suboptimality guarantees, which does not rely on submodularity and takes the sensor dynamics into account. Our method performs provably better than the widely used greedy one. Coupled with linearization and model predictive control, it can be used to generate adaptive policies for mobile sensors with non-linear sensing models. Applications in gas concentration mapping and target tracking are presented.Comment: 9 pages (two-column); 2 figures; Manuscript submitted to the 2014 IEEE International Conference on Robotics and Automatio
    corecore