2,217 research outputs found

    Tidal Tails Test the Equivalence Principle in the Dark Sector

    Get PDF
    Satellite galaxies currently undergoing tidal disruption offer a unique opportunity to constrain an effective violation of the equivalence principle in the dark sector. Theories in which cold dark matter (CDM) couples to a light scalar field naturally lead to a long-range force between dark matter particles. An inverse-square-law force of this kind would manifest itself as a violation of the equivalence principle in the dynamics of CDM compared to baryons in the form of gas or stars. In a previous paper, we showed that an attractive force would displace stars outwards from the bottom of the satellite's gravitational potential well, leading to a higher fraction of stars being disrupted from the tidal bulge further from the Galactic center. Since stars disrupted from the far (near) side of the satellite go on to form the trailing (leading) tidal stream, an attractive dark-matter force will produce a relative enhancement of the trailing stream compared to the leading stream. This distinctive signature of a dark-matter force might be detected through detailed observations of the tidal tails of a disrupting satellite, such as those recently performed by the Two-Micron All-Sky Survey (2MASS) and Sloan Digital Sky Survey (SDSS) on the Sagittarius (Sgr) dwarf galaxy. Here we show that this signature is robust to changes in our models for both the satellite and Milky Way, suggesting that we might hope to search for a dark-matter force in the tidal features of other recently discovered satellite galaxies in addition to the Sgr dwarf.Comment: 29 pages, 13 figures, final version published in PR

    Self-force approach for radiation reaction

    Get PDF
    We overview the recently proposed mode-sum regularization prescription (MSRP) for the calculation of the local radiation-reaction forces, which are crucial for the orbital evolution of binaries. We then describe some new results which were obtained using MSRP, and discuss their importance for gravitational-wave astronomy.Comment: Talk given at the 3rd Edoardo Amaldi Conference on Gravitational Waves, 12-16 July, 199

    Evidence for a gravitational Myers effect

    Full text link
    An indication for the existence of a collective Myers solution in the non-abelian D0-brane Born-Infeld action is the presence of a tachyonic mode in fluctuations around the standard diagonal background. We show that this computation for non-abelian D0-branes in curved space has the geometric interpretation of computing the eigenvalues of the geodesic deviation operator for U(N)-valued coordinates. On general grounds one therefore expects a geometric Myers effect in regions of sufficiently negative curvature. We confirm this by explicit computations for non-abelian D0-branes on a sphere and a hyperboloid. For the former the diagonal solution is stable, but not so for the latter. We conclude by showing that near the horizon of a Schwarzschild black hole one also finds a tachyonic mode in the fluctuation spectrum, signaling the possibility of a near-horizon gravitationally induced Myers effect.Comment: LaTeX, 23 page

    A Numerical Perspective on Hartree-Fock-Bogoliubov Theory

    Full text link
    The method of choice for describing attractive quantum systems is Hartree-Fock-Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of pairing effects, the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree-Fock-Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan) algorithm. Following works by Canc\`es, Le Bris and Levitt for electrons in atoms and molecules, we show that this algorithm either converges to a solution of the equation, or oscillates between two states, none of them being a solution to the HFB equations. We also adapt the Optimal Damping Algorithm of Canc\`es and Le Bris to the HFB setting and we analyze it. The last part of the paper is devoted to numerical experiments. We consider a purely gravitational system and numerically discover that pairing always occurs. We then examine a simplified model for nucleons, with an effective interaction similar to what is often used in nuclear physics. In both cases we discuss the importance of using a damping algorithm
    • …
    corecore