2 research outputs found

    Gravitation Field Algorithm with Optimal Detection for Unconstrained Optimization

    Get PDF
    This work is supported by the National Natural Science Foundation of China (Grant Nos. 61472159, 61572227), Development Project of Jilin Province of China (Nos. 20160204022GX, 20160414009GH, 2017C033).Postprin

    Parallel Acceleration and Improvement of Gravitational Field Optimization Algorithm

    Get PDF
    The Gravitational Field Algorithm, a modern optimization algorithm, mainly simulates celestial mechanics and is derived from the Solar Nebular Disk Model (SNDM). It simulates the process of planetary formation to search for the optimal solution. Although this optimization algorithm has more advantages than other optimization algorithms in multi-peak optimization problems, it still has the shortcoming of long computation time when dealing with large-scale datasets or solving complex problems. Therefore, it is necessary to improve the efficiency of the Gravitational Field Algorithm (GFA). In this paper, an optimization method based on multi-population parallel is proposed to accelerate the Gravitational Field Algorithm. With the help of the parallel mechanism in MATLAB, the algorithm execution speed will be improved by using the parallel computing mode of multi-core CPU. In addition, this paper also improves the absorption operation strategy. By comparing the experimental results of eight classical unconstrained optimization problems, it is shown that the computational efficiency of this method is improved compared with the original Gravitational Field Algorithm, and the algorithm accuracy has also been slightly improved
    corecore