69,122 research outputs found

    Obstacle Numbers of Planar Graphs

    Full text link
    Given finitely many connected polygonal obstacles O1,…,OkO_1,\dots,O_k in the plane and a set PP of points in general position and not in any obstacle, the {\em visibility graph} of PP with obstacles O1,…,OkO_1,\dots,O_k is the (geometric) graph with vertex set PP, where two vertices are adjacent if the straight line segment joining them intersects no obstacle. The obstacle number of a graph GG is the smallest integer kk such that GG is the visibility graph of a set of points with kk obstacles. If GG is planar, we define the planar obstacle number of GG by further requiring that the visibility graph has no crossing edges (hence that it is a planar geometric drawing of GG). In this paper, we prove that the maximum planar obstacle number of a planar graph of order nn is n−3n-3, the maximum being attained (in particular) by maximal bipartite planar graphs. This displays a significant difference with the standard obstacle number, as we prove that the obstacle number of every bipartite planar graph (and more generally in the class PURE-2-DIR of intersection graphs of straight line segments in two directions) of order at least 33 is 11.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Landmark Guided Probabilistic Roadmap Queries

    Full text link
    A landmark based heuristic is investigated for reducing query phase run-time of the probabilistic roadmap (\PRM) motion planning method. The heuristic is generated by storing minimum spanning trees from a small number of vertices within the \PRM graph and using these trees to approximate the cost of a shortest path between any two vertices of the graph. The intermediate step of preprocessing the graph increases the time and memory requirements of the classical motion planning technique in exchange for speeding up individual queries making the method advantageous in multi-query applications. This paper investigates these trade-offs on \PRM graphs constructed in randomized environments as well as a practical manipulator simulation.We conclude that the method is preferable to Dijkstra's algorithm or the A∗{\rm A}^* algorithm with conventional heuristics in multi-query applications.Comment: 7 Page

    Graphs with Plane Outside-Obstacle Representations

    Full text link
    An \emph{obstacle representation} of a graph consists of a set of polygonal obstacles and a distinct point for each vertex such that two points see each other if and only if the corresponding vertices are adjacent. Obstacle representations are a recent generalization of classical polygon--vertex visibility graphs, for which the characterization and recognition problems are long-standing open questions. In this paper, we study \emph{plane outside-obstacle representations}, where all obstacles lie in the unbounded face of the representation and no two visibility segments cross. We give a combinatorial characterization of the biconnected graphs that admit such a representation. Based on this characterization, we present a simple linear-time recognition algorithm for these graphs. As a side result, we show that the plane vertex--polygon visibility graphs are exactly the maximal outerplanar graphs and that every chordal outerplanar graph has an outside-obstacle representation.Comment: 12 pages, 7 figure

    Combining Subgoal Graphs with Reinforcement Learning to Build a Rational Pathfinder

    Full text link
    In this paper, we present a hierarchical path planning framework called SG-RL (subgoal graphs-reinforcement learning), to plan rational paths for agents maneuvering in continuous and uncertain environments. By "rational", we mean (1) efficient path planning to eliminate first-move lags; (2) collision-free and smooth for agents with kinematic constraints satisfied. SG-RL works in a two-level manner. At the first level, SG-RL uses a geometric path-planning method, i.e., Simple Subgoal Graphs (SSG), to efficiently find optimal abstract paths, also called subgoal sequences. At the second level, SG-RL uses an RL method, i.e., Least-Squares Policy Iteration (LSPI), to learn near-optimal motion-planning policies which can generate kinematically feasible and collision-free trajectories between adjacent subgoals. The first advantage of the proposed method is that SSG can solve the limitations of sparse reward and local minima trap for RL agents; thus, LSPI can be used to generate paths in complex environments. The second advantage is that, when the environment changes slightly (i.e., unexpected obstacles appearing), SG-RL does not need to reconstruct subgoal graphs and replan subgoal sequences using SSG, since LSPI can deal with uncertainties by exploiting its generalization ability to handle changes in environments. Simulation experiments in representative scenarios demonstrate that, compared with existing methods, SG-RL can work well on large-scale maps with relatively low action-switching frequencies and shorter path lengths, and SG-RL can deal with small changes in environments. We further demonstrate that the design of reward functions and the types of training environments are important factors for learning feasible policies.Comment: 20 page

    Accelerating Reinforcement Learning by Composing Solutions of Automatically Identified Subtasks

    Full text link
    This paper discusses a system that accelerates reinforcement learning by using transfer from related tasks. Without such transfer, even if two tasks are very similar at some abstract level, an extensive re-learning effort is required. The system achieves much of its power by transferring parts of previously learned solutions rather than a single complete solution. The system exploits strong features in the multi-dimensional function produced by reinforcement learning in solving a particular task. These features are stable and easy to recognize early in the learning process. They generate a partitioning of the state space and thus the function. The partition is represented as a graph. This is used to index and compose functions stored in a case base to form a close approximation to the solution of the new task. Experiments demonstrate that function composition often produces more than an order of magnitude increase in learning rate compared to a basic reinforcement learning algorithm
    • …
    corecore