1,024 research outputs found

    Lift-and-project ranks of the stable set polytope of joined a-perfect graphs

    Full text link
    In this paper we study lift-and-project polyhedral operators defined by Lov?asz and Schrijver and Balas, Ceria and Cornu?ejols on the clique relaxation of the stable set polytope of web graphs. We compute the disjunctive rank of all webs and consequently of antiweb graphs. We also obtain the disjunctive rank of the antiweb constraints for which the complexity of the separation problem is still unknown. Finally, we use our results to provide bounds of the disjunctive rank of larger classes of graphs as joined a-perfect graphs, where near-bipartite graphs belong

    Motif Clustering and Overlapping Clustering for Social Network Analysis

    Full text link
    Motivated by applications in social network community analysis, we introduce a new clustering paradigm termed motif clustering. Unlike classical clustering, motif clustering aims to minimize the number of clustering errors associated with both edges and certain higher order graph structures (motifs) that represent "atomic units" of social organizations. Our contributions are two-fold: We first introduce motif correlation clustering, in which the goal is to agnostically partition the vertices of a weighted complete graph so that certain predetermined "important" social subgraphs mostly lie within the same cluster, while "less relevant" social subgraphs are allowed to lie across clusters. We then proceed to introduce the notion of motif covers, in which the goal is to cover the vertices of motifs via the smallest number of (near) cliques in the graph. Motif cover algorithms provide a natural solution for overlapping clustering and they also play an important role in latent feature inference of networks. For both motif correlation clustering and its extension introduced via the covering problem, we provide hardness results, algorithmic solutions and community detection results for two well-studied social networks

    Complexes of not ii-connected graphs

    Full text link
    Complexes of (not) connected graphs, hypergraphs and their homology appear in the construction of knot invariants given by V. Vassiliev. In this paper we study the complexes of not ii-connected kk-hypergraphs on nn vertices. We show that the complex of not 22-connected graphs has the homotopy type of a wedge of (n−2)!(n-2)! spheres of dimension 2n−52n-5. This answers one of the questions raised by Vassiliev in connection with knot invariants. For this case the SnS_n-action on the homology of the complex is also determined. For complexes of not 22-connected kk-hypergraphs we provide a formula for the generating function of the Euler characteristic, and we introduce certain lattices of graphs that encode their topology. We also present partial results for some other cases. In particular, we show that the complex of not (n−2)(n-2)-connected graphs is Alexander dual to the complex of partial matchings of the complete graph. For not (n−3)(n-3)-connected graphs we provide a formula for the generating function of the Euler characteristic

    Total Domishold Graphs: a Generalization of Threshold Graphs, with Connections to Threshold Hypergraphs

    Full text link
    A total dominating set in a graph is a set of vertices such that every vertex of the graph has a neighbor in the set. We introduce and study graphs that admit non-negative real weights associated to their vertices such that a set of vertices is a total dominating set if and only if the sum of the corresponding weights exceeds a certain threshold. We show that these graphs, which we call total domishold graphs, form a non-hereditary class of graphs properly containing the classes of threshold graphs and the complements of domishold graphs, and are closely related to threshold Boolean functions and threshold hypergraphs. We present a polynomial time recognition algorithm of total domishold graphs, and characterize graphs in which the above property holds in a hereditary sense. Our characterization is obtained by studying a new family of hypergraphs, defined similarly as the Sperner hypergraphs, which may be of independent interest.Comment: 19 pages, 1 figur
    • …
    corecore