953 research outputs found

    Shortened Array Codes of Large Girth

    Full text link
    One approach to designing structured low-density parity-check (LDPC) codes with large girth is to shorten codes with small girth in such a manner that the deleted columns of the parity-check matrix contain all the variables involved in short cycles. This approach is especially effective if the parity-check matrix of a code is a matrix composed of blocks of circulant permutation matrices, as is the case for the class of codes known as array codes. We show how to shorten array codes by deleting certain columns of their parity-check matrices so as to increase their girth. The shortening approach is based on the observation that for array codes, and in fact for a slightly more general class of LDPC codes, the cycles in the corresponding Tanner graph are governed by certain homogeneous linear equations with integer coefficients. Consequently, we can selectively eliminate cycles from an array code by only retaining those columns from the parity-check matrix of the original code that are indexed by integer sequences that do not contain solutions to the equations governing those cycles. We provide Ramsey-theoretic estimates for the maximum number of columns that can be retained from the original parity-check matrix with the property that the sequence of their indices avoid solutions to various types of cycle-governing equations. This translates to estimates of the rate penalty incurred in shortening a code to eliminate cycles. Simulation results show that for the codes considered, shortening them to increase the girth can lead to significant gains in signal-to-noise ratio in the case of communication over an additive white Gaussian noise channel.Comment: 16 pages; 8 figures; to appear in IEEE Transactions on Information Theory, Aug 200

    Unified bijections for maps with prescribed degrees and girth

    Full text link
    This article presents unified bijective constructions for planar maps, with control on the face degrees and on the girth. Recall that the girth is the length of the smallest cycle, so that maps of girth at least d=1,2,3d=1,2,3 are respectively the general, loopless, and simple maps. For each positive integer dd, we obtain a bijection for the class of plane maps (maps with one distinguished root-face) of girth dd having a root-face of degree dd. We then obtain more general bijective constructions for annular maps (maps with two distinguished root-faces) of girth at least dd. Our bijections associate to each map a decorated plane tree, and non-root faces of degree kk of the map correspond to vertices of degree kk of the tree. As special cases we recover several known bijections for bipartite maps, loopless triangulations, simple triangulations, simple quadrangulations, etc. Our work unifies and greatly extends these bijective constructions. In terms of counting, we obtain for each integer dd an expression for the generating function Fd(xd,xd+1,xd+2,...)F_d(x_d,x_{d+1},x_{d+2},...) of plane maps of girth dd with root-face of degree dd, where the variable xkx_k counts the non-root faces of degree kk. The expression for F1F_1 was already obtained bijectively by Bouttier, Di Francesco and Guitter, but for dβ‰₯2d\geq 2 the expression of FdF_d is new. We also obtain an expression for the generating function \G_{p,q}^{(d,e)}(x_d,x_{d+1},...) of annular maps with root-faces of degrees pp and qq, such that cycles separating the two root-faces have length at least ee while other cycles have length at least dd. Our strategy is to obtain all the bijections as specializations of a single "master bijection" introduced by the authors in a previous article. In order to use this approach, we exhibit certain "canonical orientations" characterizing maps with prescribed girth constraints

    Optimal Vertex Fault Tolerant Spanners (for fixed stretch)

    Full text link
    A kk-spanner of a graph GG is a sparse subgraph HH whose shortest path distances match those of GG up to a multiplicative error kk. In this paper we study spanners that are resistant to faults. A subgraph HβŠ†GH \subseteq G is an ff vertex fault tolerant (VFT) kk-spanner if Hβˆ–FH \setminus F is a kk-spanner of Gβˆ–FG \setminus F for any small set FF of ff vertices that might "fail." One of the main questions in the area is: what is the minimum size of an ff fault tolerant kk-spanner that holds for all nn node graphs (as a function of ff, kk and nn)? This question was first studied in the context of geometric graphs [Levcopoulos et al. STOC '98, Czumaj and Zhao SoCG '03] and has more recently been considered in general undirected graphs [Chechik et al. STOC '09, Dinitz and Krauthgamer PODC '11]. In this paper, we settle the question of the optimal size of a VFT spanner, in the setting where the stretch factor kk is fixed. Specifically, we prove that every (undirected, possibly weighted) nn-node graph GG has a (2kβˆ’1)(2k-1)-spanner resilient to ff vertex faults with Ok(f1βˆ’1/kn1+1/k)O_k(f^{1 - 1/k} n^{1 + 1/k}) edges, and this is fully optimal (unless the famous Erdos Girth Conjecture is false). Our lower bound even generalizes to imply that no data structure capable of approximating distGβˆ–F(s,t)dist_{G \setminus F}(s, t) similarly can beat the space usage of our spanner in the worst case. We also consider the edge fault tolerant (EFT) model, defined analogously with edge failures rather than vertex failures. We show that the same spanner upper bound applies in this setting. Our data structure lower bound extends to the case k=2k=2 (and hence we close the EFT problem for 33-approximations), but it falls to Ξ©(f1/2βˆ’1/(2k)β‹…n1+1/k)\Omega(f^{1/2 - 1/(2k)} \cdot n^{1 + 1/k}) for kβ‰₯3k \ge 3. We leave it as an open problem to close this gap.Comment: To appear in SODA 201

    From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes

    Full text link
    Cages, defined as regular graphs with minimum number of nodes for a given girth, are well-studied in graph theory. Trapping sets are graphical structures responsible for error floor of low-density parity-check (LDPC) codes, and are well investigated in coding theory. In this paper, we make connections between cages and trapping sets. In particular, starting from a cage (or a modified cage), we construct a trapping set in multiple steps. Based on the connection between cages and trapping sets, we then use the available results in graph theory on cages and derive tight upper bounds on the size of the smallest trapping sets for variable-regular LDPC codes with a given variable degree and girth. The derived upper bounds in many cases meet the best known lower bounds and thus provide the actual size of the smallest trapping sets. Considering that non-zero codewords are a special case of trapping sets, we also derive tight upper bounds on the minimum weight of such codewords, i.e., the minimum distance, of variable-regular LDPC codes as a function of variable degree and girth
    • …
    corecore