4 research outputs found

    Diversifying agent's behaviors in interactive decision models

    Get PDF
    Modeling other agents' behaviors plays an important role in decision models for interactions among multiple agents. To optimize its own decisions, a subject agent needs to model what other agents act simultaneously in an uncertain environment. However, modeling insufficiency occurs when the agents are competitive and the subject agent cannot get full knowledge about other agents. Even when the agents are collaborative, they may not share their true behaviors due to their privacy concerns. Most of the recent research still assumes that the agents have common knowledge about their environments and a subject agent has the true behavior of other agents in its mind. Consequently, the resulting techniques are not applicable in many practical problem domains. In this article, we investigate into diversifying behaviors of other agents in the subject agent's decision model before their interactions. The challenges lie in generating and measuring new behaviors of other agents. Starting with prior knowledge about other agents' behaviors, we use a linear reduction technique to extract representative behavioral features from the known behaviors. We subsequently generate their new behaviors by expanding the features and propose two diversity measurements to select top‐ K KK behaviors. We demonstrate the performance of the new techniques in two well‐studied problem domains. The top‐ K KK behavior selection embarks the study of unknown behaviors in multiagent decision making and inspires investigation of diversifying agents' behaviors in competitive agent interactions. This study will contribute to intelligent systems dealing with unknown unknowns in an open artificial intelligence world

    An extended study on addressing defender teamwork while accounting for uncertainty in attacker defender games using iterative Dec-MDPs

    Get PDF
    Multi-agent teamwork and defender-attacker security games are two areas that are currently receiving significant attention within multi-agent systems research. Unfortunately, despite the need for effective teamwork among multiple defenders, little has been done to harness the teamwork 1 research in security games. The problem that this paper seeks to solve is the coordination of decentralized defender agents in the presence of uncer-tainty while securing targets against an observing adversary. To address this problem, we offer the following novel contributions in this paper: (i) New model of security games with defender teams that coordinate under uncertainty; (ii) New algorithm based on column generation that uti-lizes Decentralized Markov Decision Processes (Dec-MDPs) to generate defender strategies that incorporate uncertainty; (iii) New techniques to handle global events (when one or more agents may leave the system) during defender execution; (iv) Heuristics that help scale up in the num-ber of targets and agents to handle real-world scenarios; (v) Exploration of the robustness of randomized pure strategies. The paper opens the door to a potentially new area combining computational game theory and multi-agent teamwork.

    Graphical models for online solutions to interactive POMDPs

    No full text
    AAAI Spring Symposium - Technical ReportSS-07-028-1
    corecore