12,474 research outputs found

    An empirical Bayes procedure for the selection of Gaussian graphical models

    Full text link
    A new methodology for model determination in decomposable graphical Gaussian models is developed. The Bayesian paradigm is used and, for each given graph, a hyper inverse Wishart prior distribution on the covariance matrix is considered. This prior distribution depends on hyper-parameters. It is well-known that the models's posterior distribution is sensitive to the specification of these hyper-parameters and no completely satisfactory method is registered. In order to avoid this problem, we suggest adopting an empirical Bayes strategy, that is a strategy for which the values of the hyper-parameters are determined using the data. Typically, the hyper-parameters are fixed to their maximum likelihood estimations. In order to calculate these maximum likelihood estimations, we suggest a Markov chain Monte Carlo version of the Stochastic Approximation EM algorithm. Moreover, we introduce a new sampling scheme in the space of graphs that improves the add and delete proposal of Armstrong et al. (2009). We illustrate the efficiency of this new scheme on simulated and real datasets

    Graphical chain models for the analysis of complex genetic diseases: an application to hypertension

    Get PDF
    A crucial task in modern genetic medicine is the understanding of complex genetic diseases. The main complicating features are that a combination of genetic and environmental risk factors is involved, and the phenotype of interest may be complex. Traditional statistical techniques based on lod-scores fail when the disease is no longer monogenic and the underlying disease transmission model is not defined. Different kinds of association tests have been proved to be an appropriate and powerful statistical tool to detect a candidate gene for a complex disorder. However, statistical techniques able to investigate direct and indirect influences among phenotypes, genotypes and environmental risk factors, are required to analyse the association structure of complex diseases. In this paper we propose graphical models as a natural tool to analyse the multifactorial structure of complex genetic diseases. An application of this model to primary hypertension data set is illustrated

    Sequences of regressions and their independences

    Full text link
    Ordered sequences of univariate or multivariate regressions provide statistical models for analysing data from randomized, possibly sequential interventions, from cohort or multi-wave panel studies, but also from cross-sectional or retrospective studies. Conditional independences are captured by what we name regression graphs, provided the generated distribution shares some properties with a joint Gaussian distribution. Regression graphs extend purely directed, acyclic graphs by two types of undirected graph, one type for components of joint responses and the other for components of the context vector variable. We review the special features and the history of regression graphs, derive criteria to read all implied independences of a regression graph and prove criteria for Markov equivalence that is to judge whether two different graphs imply the same set of independence statements. Knowledge of Markov equivalence provides alternative interpretations of a given sequence of regressions, is essential for machine learning strategies and permits to use the simple graphical criteria of regression graphs on graphs for which the corresponding criteria are in general more complex. Under the known conditions that a Markov equivalent directed acyclic graph exists for any given regression graph, we give a polynomial time algorithm to find one such graph.Comment: 43 pages with 17 figures The manuscript is to appear as an invited discussion paper in the journal TES
    • …
    corecore