301,445 research outputs found

    CP Violations in Lepton Number Violation Processes and Neutrino Oscillations

    Get PDF
    We examine the constraints on the MNS lepton mixing matrix from the present and future experimental data of the neutrino oscillation and lepton number violation processes. We introduce a graphical representation of the CP violation phases which appear in the lepton number violation processes such as neutrinoless double beta decay, the μ−−e+\mu^--e^+ conversion, and the K decay, K−→π+μ−μ−.K^-\to\pi^+\mu^-\mu^-. Using this graphical representation, we derive the constraints on the CP violation phases in the lepton sector.Comment: 21pp, REVTeX, 9 Figure

    Graphical methods for inequality constraints in marginalized DAGs

    Full text link
    We present a graphical approach to deriving inequality constraints for directed acyclic graph (DAG) models, where some variables are unobserved. In particular we show that the observed distribution of a discrete model is always restricted if any two observed variables are neither adjacent in the graph, nor share a latent parent; this generalizes the well known instrumental inequality. The method also provides inequalities on interventional distributions, which can be used to bound causal effects. All these constraints are characterized in terms of a new graphical separation criterion, providing an easy and intuitive method for their derivation.Comment: A final version will appear in the proceedings of the 22nd Workshop on Machine Learning and Signal Processing, 201

    Algebraic Aspects of Conditional Independence and Graphical Models

    Full text link
    This chapter of the forthcoming Handbook of Graphical Models contains an overview of basic theorems and techniques from algebraic geometry and how they can be applied to the study of conditional independence and graphical models. It also introduces binomial ideals and some ideas from real algebraic geometry. When random variables are discrete or Gaussian, tools from computational algebraic geometry can be used to understand implications between conditional independence statements. This is accomplished by computing primary decompositions of conditional independence ideals. As examples the chapter presents in detail the graphical model of a four cycle and the intersection axiom, a certain implication of conditional independence statements. Another important problem in the area is to determine all constraints on a graphical model, for example, equations determined by trek separation. The full set of equality constraints can be determined by computing the model's vanishing ideal. The chapter illustrates these techniques and ideas with examples from the literature and provides references for further reading.Comment: 20 pages, 1 figur

    Sparse Nested Markov models with Log-linear Parameters

    Full text link
    Hidden variables are ubiquitous in practical data analysis, and therefore modeling marginal densities and doing inference with the resulting models is an important problem in statistics, machine learning, and causal inference. Recently, a new type of graphical model, called the nested Markov model, was developed which captures equality constraints found in marginals of directed acyclic graph (DAG) models. Some of these constraints, such as the so called `Verma constraint', strictly generalize conditional independence. To make modeling and inference with nested Markov models practical, it is necessary to limit the number of parameters in the model, while still correctly capturing the constraints in the marginal of a DAG model. Placing such limits is similar in spirit to sparsity methods for undirected graphical models, and regression models. In this paper, we give a log-linear parameterization which allows sparse modeling with nested Markov models. We illustrate the advantages of this parameterization with a simulation study.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Collaborative Training in Sensor Networks: A graphical model approach

    Full text link
    Graphical models have been widely applied in solving distributed inference problems in sensor networks. In this paper, the problem of coordinating a network of sensors to train a unique ensemble estimator under communication constraints is discussed. The information structure of graphical models with specific potential functions is employed, and this thus converts the collaborative training task into a problem of local training plus global inference. Two important classes of algorithms of graphical model inference, message-passing algorithm and sampling algorithm, are employed to tackle low-dimensional, parametrized and high-dimensional, non-parametrized problems respectively. The efficacy of this approach is demonstrated by concrete examples

    Nested Markov Properties for Acyclic Directed Mixed Graphs

    Full text link
    Directed acyclic graph (DAG) models may be characterized in at least four different ways: via a factorization, the d-separation criterion, the moralization criterion, and the local Markov property. As pointed out by Robins (1986, 1999), Verma and Pearl (1990), and Tian and Pearl (2002b), marginals of DAG models also imply equality constraints that are not conditional independences. The well-known `Verma constraint' is an example. Constraints of this type were used for testing edges (Shpitser et al., 2009), and an efficient marginalization scheme via variable elimination (Shpitser et al., 2011). We show that equality constraints like the `Verma constraint' can be viewed as conditional independences in kernel objects obtained from joint distributions via a fixing operation that generalizes conditioning and marginalization. We use these constraints to define, via Markov properties and a factorization, a graphical model associated with acyclic directed mixed graphs (ADMGs). We show that marginal distributions of DAG models lie in this model, prove that a characterization of these constraints given in (Tian and Pearl, 2002b) gives an alternative definition of the model, and finally show that the fixing operation we used to define the model can be used to give a particularly simple characterization of identifiable causal effects in hidden variable graphical causal models.Comment: 67 pages (not including appendix and references), 8 figure
    • …
    corecore