40,049 research outputs found

    EyeSpot: leveraging gaze to protect private text content on mobile devices from shoulder surfing

    Get PDF
    As mobile devices allow access to an increasing amount of private data, using them in public can potentially leak sensitive information through shoulder surfing. This includes personal private data (e.g., in chat conversations) and business-related content (e.g., in emails). Leaking the former might infringe on users’ privacy, while leaking the latter is considered a breach of the EU’s General Data Protection Regulation as of May 2018. This creates a need for systems that protect sensitive data in public. We introduce EyeSpot, a technique that displays content through a spot that follows the user’s gaze while hiding the rest of the screen from an observer’s view through overlaid masks. We explore different configurations for EyeSpot in a user study in terms of users’ reading speed, text comprehension, and perceived workload. While our system is a proof of concept, we identify crystallized masks as a promising design candidate for further evaluation with regard to the security of the system in a shoulder surfing scenario

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    Translating Video Recordings of Mobile App Usages into Replayable Scenarios

    Full text link
    Screen recordings of mobile applications are easy to obtain and capture a wealth of information pertinent to software developers (e.g., bugs or feature requests), making them a popular mechanism for crowdsourced app feedback. Thus, these videos are becoming a common artifact that developers must manage. In light of unique mobile development constraints, including swift release cycles and rapidly evolving platforms, automated techniques for analyzing all types of rich software artifacts provide benefit to mobile developers. Unfortunately, automatically analyzing screen recordings presents serious challenges, due to their graphical nature, compared to other types of (textual) artifacts. To address these challenges, this paper introduces V2S, a lightweight, automated approach for translating video recordings of Android app usages into replayable scenarios. V2S is based primarily on computer vision techniques and adapts recent solutions for object detection and image classification to detect and classify user actions captured in a video, and convert these into a replayable test scenario. We performed an extensive evaluation of V2S involving 175 videos depicting 3,534 GUI-based actions collected from users exercising features and reproducing bugs from over 80 popular Android apps. Our results illustrate that V2S can accurately replay scenarios from screen recordings, and is capable of reproducing \approx 89% of our collected videos with minimal overhead. A case study with three industrial partners illustrates the potential usefulness of V2S from the viewpoint of developers.Comment: In proceedings of the 42nd International Conference on Software Engineering (ICSE'20), 13 page

    MultiVis: improving access to visualisations for visually impaired people

    Get PDF
    This paper illustrates work undertaken on the MultiVis project to allow visually impaired users both to construct and browse mathematical graphs effectively. We start by discussing the need for such work, before discussing some of the problems of current technology. We then discuss Graph Builder, a novel tool to allow interactive graph construction, and Sound Bar which provides quick overview access to bar graphs

    Assessing haptic properties for data representation

    Get PDF
    This paper describes the results of a series of forced choice design experiments investigating the discrimination of material properties using a PHANToM haptic device. Research has shown that the PHANToM is effective at displaying graphical information to blind people, but the techniques used so far have been very simple. Our experiments showed that subjects' discrimination of friction was significantly better than that of stiffness or the spatial period of sinusoidal textures, over the range of stimuli investigated. Thus, it is proposed that graphical data could be made more easily accessible to blind users by scaling the data values to friction rather than shape or size, as in traditional bar charts
    corecore