915 research outputs found

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table

    Bio-Inspired Resource Allocation for Relay-Aided Device-to-Device Communications

    Full text link
    The Device-to-Device (D2D) communication principle is a key enabler of direct localized communication between mobile nodes and is expected to propel a plethora of novel multimedia services. However, even though it offers a wide set of capabilities mainly due to the proximity and resource reuse gains, interference must be carefully controlled to maximize the achievable rate for coexisting cellular and D2D users. The scope of this work is to provide an interference-aware real-time resource allocation (RA) framework for relay-aided D2D communications that underlay cellular networks. The main objective is to maximize the overall network throughput by guaranteeing a minimum rate threshold for cellular and D2D links. To this direction, genetic algorithms (GAs) are proven to be powerful and versatile methodologies that account for not only enhanced performance but also reduced computational complexity in emerging wireless networks. Numerical investigations highlight the performance gains compared to baseline RA methods and especially in highly dense scenarios which will be the case in future 5G networks.Comment: 6 pages, 6 figure

    Relay assisted device-to-device communication with channel uncertainty

    Get PDF
    The gains of direct communication between user equipment in a network may not be fully realised due to the separation between the user equipment and due to the fading that the channel between these user equipment experiences. In order to fully realise the gains that direct (device-to-device) communication promises, idle user equipment can be exploited to serve as relays to enforce device-to-device communication. The availability of potential relay user equipment creates a problem: a way to select the relay user equipment. Moreover, unlike infrastructure relays, user equipment are carried around by people and these users are self-interested. Thus the problem of relay selection goes beyond choosing which device to assist in relayed communication but catering for user self-interest. Another problem in wireless communication is the unavailability of perfect channel state information. This reality creates uncertainty in the channel and so in designing selection algorithms, channel uncertainty awareness needs to be a consideration. Therefore the work in this thesis considers the design of relay user equipment selection algorithms that are not only device centric but that are relay user equipment centric. Furthermore, the designed algorithms are channel uncertainty aware. Firstly, a stable matching based relay user equipment selection algorithm is put forward for underlay device-to-device communication. A channel uncertainty aware approach is proposed to cater to imperfect channel state information at the devices. The algorithm is combined with a rate based mode selection algorithm. Next, to cater to the queue state at the relay user equipment, a cross-layer selection algorithm is proposed for a twoway decode and forward relay set up. The algorithm proposed employs deterministic uncertainty constraint in the interference channel, solving the selection algorithm in a heuristic fashion. Then a cluster head selection algorithm is proposed for device-to-device group communication constrained by channel uncertainty in the interference channel. The formulated rate maximization problem is solved for deterministic and probabilistic constraint scenarios, and the problem extended to a multiple-input single-out scenario for which robust beamforming was designed. Finally, relay utility and social distance based selection algorithms are proposed for full duplex decode and forward device-to-device communication set up. A worst-case approach is proposed for a full channel uncertainty scenario. The results from computer simulations indicate that the proposed algorithms offer spectral efficiency, fairness and energy efficiency gains. The results also showed clearly the deterioration in the performance of networks when perfect channel state information is assumed

    Two-Way Relaying Cooperative Wireless Networks: Resource Allocation and Performance Analysis

    Get PDF
    Relay-based cooperative wireless networks have been widely considered one of the cost-effective solutions to meet the demands in future wireless networks. In order to maximize the overall sum-rate while maintaining proportional fairness among users, we investigate different resource allocation algorithms in two-way relay networks with analog network coding (ANC) protocol and time division broadcast (TDBC) protocol. The algorithms investigated are different from traditional proportional fairness schemes in terms of fairness and computational complexity as we have applied Access Proportional Fairness (APF) and Minimum Rate Proportional Fairness (MRPF) along with load balancing at the relays. A MATLAB simulation has been performed and simulation results show the effectiveness of these algorithms

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen
    • …
    corecore