2 research outputs found

    Graph-based Deep-Tree Recursive Neural Network (DTRNN) for Text Classification

    Full text link
    A novel graph-to-tree conversion mechanism called the deep-tree generation (DTG) algorithm is first proposed to predict text data represented by graphs. The DTG method can generate a richer and more accurate representation for nodes (or vertices) in graphs. It adds flexibility in exploring the vertex neighborhood information to better reflect the second order proximity and homophily equivalence in a graph. Then, a Deep-Tree Recursive Neural Network (DTRNN) method is presented and used to classify vertices that contains text data in graphs. To demonstrate the effectiveness of the DTRNN method, we apply it to three real-world graph datasets and show that the DTRNN method outperforms several state-of-the-art benchmarking methods

    Graph Representation Learning: A Survey

    Full text link
    Research on graph representation learning has received a lot of attention in recent years since many data in real-world applications come in form of graphs. High-dimensional graph data are often in irregular form, which makes them more difficult to analyze than image/video/audio data defined on regular lattices. Various graph embedding techniques have been developed to convert the raw graph data into a low-dimensional vector representation while preserving the intrinsic graph properties. In this review, we first explain the graph embedding task and its challenges. Next, we review a wide range of graph embedding techniques with insights. Then, we evaluate several state-of-the-art methods against small and large datasets and compare their performance. Finally, potential applications and future directions are presented
    corecore