3 research outputs found

    Robust Unsupervised Flexible Auto-weighted Local-Coordinate Concept Factorization for Image Clustering

    Full text link
    We investigate the high-dimensional data clustering problem by proposing a novel and unsupervised representation learning model called Robust Flexible Auto-weighted Local-coordinate Concept Factorization (RFA-LCF). RFA-LCF integrates the robust flexible CF, robust sparse local-coordinate coding and the adaptive reconstruction weighting learning into a unified model. The adaptive weighting is driven by including the joint manifold preserving constraints on the recovered clean data, basis concepts and new representation. Specifically, our RFA-LCF uses a L2,1-norm based flexible residue to encode the mismatch between clean data and its reconstruction, and also applies the robust adaptive sparse local-coordinate coding to represent the data using a few nearby basis concepts, which can make the factorization more accurate and robust to noise. The robust flexible factorization is also performed in the recovered clean data space for enhancing representations. RFA-LCF also considers preserving the local manifold structures of clean data space, basis concept space and the new coordinate space jointly in an adaptive manner way. Extensive comparisons show that RFA-LCF can deliver enhanced clustering results.Comment: Accepted at the 44th IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP 2019

    Dual-constrained Deep Semi-Supervised Coupled Factorization Network with Enriched Prior

    Full text link
    Nonnegative matrix factorization is usually powerful for learning the "shallow" parts-based representation, but it clearly fails to discover deep hierarchical information within both the basis and representation spaces. In this paper, we technically propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net, for learning the hierarchical coupled representations. To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network. Specifically, DS2CF-Net designs a deep coupled factorization architecture using multi-layers of linear transformations, which coupled updates the bases and new representations in each layer. To improve the discriminating ability of learned deep representations and deep coefficients, our network clearly considers enriching the supervised prior by the joint deep coefficients-regularized label prediction, and incorporates enriched prior information as additional label and structure constraints. The label constraint can enable the samples of the same label to have the same coordinate in the new feature space, while the structure constraint forces the coefficient matrices in each layer to be block-diagonal so that the enhanced prior using the self-expressive label propagation are more accurate. Our network also integrates the adaptive dual-graph learning to retain the local manifold structures of both the data manifold and feature manifold by minimizing the reconstruction errors in each layer. Extensive experiments on several real databases demonstrate that our DS2CF-Net can obtain state-of-the-art performance for representation learning and clustering

    Flexible Auto-weighted Local-coordinate Concept Factorization: A Robust Framework for Unsupervised Clustering

    Full text link
    Concept Factorization (CF) and its variants may produce inaccurate representation and clustering results due to the sensitivity to noise, hard constraint on the reconstruction error and pre-obtained approximate similarities. To improve the representation ability, a novel unsupervised Robust Flexible Auto-weighted Local-coordinate Concept Factorization (RFA-LCF) framework is proposed for clustering high-dimensional data. Specifically, RFA-LCF integrates the robust flexible CF by clean data space recovery, robust sparse local-coordinate coding and adaptive weighting into a unified model. RFA-LCF improves the representations by enhancing the robustness of CF to noise and errors, providing a flexible constraint on the reconstruction error and optimizing the locality jointly. For robust learning, RFA-LCF clearly learns a sparse projection to recover the underlying clean data space, and then the flexible CF is performed in the projected feature space. RFA-LCF also uses a L2,1-norm based flexible residue to encode the mismatch between the recovered data and its reconstruction, and uses the robust sparse local-coordinate coding to represent data using a few nearby basis concepts. For auto-weighting, RFA-LCF jointly preserves the manifold structures in the basis concept space and new coordinate space in an adaptive manner by minimizing the reconstruction errors on clean data, anchor points and coordinates. By updating the local-coordinate preserving data, basis concepts and new coordinates alternately, the representation abilities can be potentially improved. Extensive results on public databases show that RFA-LCF delivers the state-of-the-art clustering results compared with other related methods.Comment: Accepted by IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE
    corecore