580 research outputs found

    Deriving Good LDPC Convolutional Codes from LDPC Block Codes

    Full text link
    Low-density parity-check (LDPC) convolutional codes are capable of achieving excellent performance with low encoding and decoding complexity. In this paper we discuss several graph-cover-based methods for deriving families of time-invariant and time-varying LDPC convolutional codes from LDPC block codes and show how earlier proposed LDPC convolutional code constructions can be presented within this framework. Some of the constructed convolutional codes significantly outperform the underlying LDPC block codes. We investigate some possible reasons for this "convolutional gain," and we also discuss the --- mostly moderate --- decoder cost increase that is incurred by going from LDPC block to LDPC convolutional codes.Comment: Submitted to IEEE Transactions on Information Theory, April 2010; revised August 2010, revised November 2010 (essentially final version). (Besides many small changes, the first and second revised versions contain corrected entries in Tables I and II.

    Spatially Coupled LDPC Codes Constructed from Protographs

    Full text link
    In this paper, we construct protograph-based spatially coupled low-density parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L, we obtain a flexible family of code ensembles with varying rates and frame lengths that can share the same encoding and decoding architecture for arbitrary L. We demonstrate that the resulting codes combine the best features of optimized irregular and regular codes in one design: capacity approaching iterative belief propagation (BP) decoding thresholds and linear growth of minimum distance with block length. In particular, we show that, for sufficiently large L, the BP thresholds on both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (AWGNC) saturate to a particular value significantly better than the BP decoding threshold and numerically indistinguishable from the optimal maximum a-posteriori (MAP) decoding threshold of the uncoupled LDPC code. When all variable nodes in the coupled chain have degree greater than two, asymptotically the error probability converges at least doubly exponentially with decoding iterations and we obtain sequences of asymptotically good LDPC codes with fast convergence rates and BP thresholds close to the Shannon limit. Further, the gap to capacity decreases as the density of the graph increases, opening up a new way to construct capacity achieving codes on memoryless binary-input symmetric-output (MBS) channels with low-complexity BP decoding.Comment: Submitted to the IEEE Transactions on Information Theor

    New Codes on Graphs Constructed by Connecting Spatially Coupled Chains

    Full text link
    A novel code construction based on spatially coupled low-density parity-check (SC-LDPC) codes is presented. The proposed code ensembles are described by protographs, comprised of several protograph-based chains characterizing individual SC-LDPC codes. We demonstrate that code ensembles obtained by connecting appropriately chosen SC-LDPC code chains at specific points have improved iterative decoding thresholds compared to those of single SC-LDPC coupled chains. In addition, it is shown that the improved decoding properties of the connected ensembles result in reduced decoding complexity required to achieve a specific bit error probability. The constructed ensembles are also asymptotically good, in the sense that the minimum distance grows linearly with the block length. Finally, we show that the improved asymptotic properties of the connected chain ensembles also translate into improved finite length performance.Comment: Submitted to IEEE Transactions on Information Theor

    LDPC Codes Which Can Correct Three Errors Under Iterative Decoding

    Full text link
    In this paper, we provide necessary and sufficient conditions for a column-weight-three LDPC code to correct three errors when decoded using Gallager A algorithm. We then provide a construction technique which results in a code satisfying the above conditions. We also provide numerical assessment of code performance via simulation results.Comment: 5 pages, 3 figures, submitted to IEEE Information Theory Workshop (ITW), 200
    • …
    corecore