58,580 research outputs found
pandapower - an Open Source Python Tool for Convenient Modeling, Analysis and Optimization of Electric Power Systems
pandapower is a Python based, BSD-licensed power system analysis tool aimed
at automation of static and quasi-static analysis and optimization of balanced
power systems. It provides power flow, optimal power flow, state estimation,
topological graph searches and short circuit calculations according to IEC
60909. pandapower includes a Newton-Raphson power flow solver formerly based on
PYPOWER, which has been accelerated with just-in-time compilation. Additional
enhancements to the solver include the capability to model constant current
loads, grids with multiple reference nodes and a connectivity check. The
pandapower network model is based on electric elements, such as lines, two and
three-winding transformers or ideal switches. All elements can be defined with
nameplate parameters and are internally processed with equivalent circuit
models, which have been validated against industry standard software tools. The
tabular data structure used to define networks is based on the Python library
pandas, which allows comfortable handling of input and output parameters. The
implementation in Python makes pandapower easy to use and allows comfortable
extension with third-party libraries. pandapower has been successfully applied
in several grid studies as well as for educational purposes. A comprehensive,
publicly available case-study demonstrates a possible application of pandapower
in an automated time series calculation
Quantifying Attention Flow in Transformers
In the Transformer model, "self-attention" combines information from attended
embeddings into the representation of the focal embedding in the next layer.
Thus, across layers of the Transformer, information originating from different
tokens gets increasingly mixed. This makes attention weights unreliable as
explanations probes. In this paper, we consider the problem of quantifying this
flow of information through self-attention. We propose two methods for
approximating the attention to input tokens given attention weights, attention
rollout and attention flow, as post hoc methods when we use attention weights
as the relative relevance of the input tokens. We show that these methods give
complementary views on the flow of information, and compared to raw attention,
both yield higher correlations with importance scores of input tokens obtained
using an ablation method and input gradients
On Zone-Based Analysis of Duration Probabilistic Automata
We propose an extension of the zone-based algorithmics for analyzing timed
automata to handle systems where timing uncertainty is considered as
probabilistic rather than set-theoretic. We study duration probabilistic
automata (DPA), expressing multiple parallel processes admitting memoryfull
continuously-distributed durations. For this model we develop an extension of
the zone-based forward reachability algorithm whose successor operator is a
density transformer, thus providing a solution to verification and performance
evaluation problems concerning acyclic DPA (or the bounded-horizon behavior of
cyclic DPA).Comment: In Proceedings INFINITY 2010, arXiv:1010.611
Formalizing Mathematical Knowledge as a Biform Theory Graph: A Case Study
A biform theory is a combination of an axiomatic theory and an algorithmic
theory that supports the integration of reasoning and computation. These are
ideal for formalizing algorithms that manipulate mathematical expressions. A
theory graph is a network of theories connected by meaning-preserving theory
morphisms that map the formulas of one theory to the formulas of another
theory. Theory graphs are in turn well suited for formalizing mathematical
knowledge at the most convenient level of abstraction using the most convenient
vocabulary. We are interested in the problem of whether a body of mathematical
knowledge can be effectively formalized as a theory graph of biform theories.
As a test case, we look at the graph of theories encoding natural number
arithmetic. We used two different formalisms to do this, which we describe and
compare. The first is realized in , a version of Church's
type theory with quotation and evaluation, and the second is realized in Agda,
a dependently typed programming language.Comment: 43 pages; published without appendices in: H. Geuvers et al., eds,
Intelligent Computer Mathematics (CICM 2017), Lecture Notes in Computer
Science, Vol. 10383, pp. 9-24, Springer, 201
Inter-winding Distributed Capacitance and Guitar Pickup Transient Response
Simple RLC circuit models of guitar pickups do not account for audible
features that characterize the pickup. Psycho-acoustic experiments reveal that
any acoustically accurate model has to reproduce the first 30 milli-seconds of
the transient response with extreme precision. The proposed model is
impractical for simple-minded model reduction or brute force numerical
simulations yet, by focusing on modeling electromagnetic details and exposing a
connection to spectral graph theory, a framework for finding the transient
response to sufficient accuracy is exposed.Comment: Four pages, no figures. This paper is associated to a conference
presentation given at CEFC 2014 in Annecy France; the posted preprint is from
October 2014, and the data for the final publication can be found belo
On the decomposition threshold of a given graph
We study the -decomposition threshold for a given graph .
Here an -decomposition of a graph is a collection of edge-disjoint
copies of in which together cover every edge of . (Such an
-decomposition can only exist if is -divisible, i.e. if and each vertex degree of can be expressed as a linear combination of
the vertex degrees of .)
The -decomposition threshold is the smallest value ensuring
that an -divisible graph on vertices with
has an -decomposition. Our main results imply
the following for a given graph , where is the fractional
version of and :
(i) ;
(ii) if , then
;
(iii) we determine if is bipartite.
In particular, (i) implies that . Our proof
involves further developments of the recent `iterative' absorbing approach.Comment: Final version, to appear in the Journal of Combinatorial Theory,
Series
Characterization of High Temperature Optocoupler for Power Electronic Systems
High-temperature devices have been rapidly increas due to the implementation of new technologies like silicon carbide, high-temperature ceramic, and others. Functionality under elevated temperatures can reduce signal integrity reducing the reliability of power electronic systems. This study presents an ongoing research effort to develop a high-temperature package for optocouplers to operate at higher temperature compared with commercial devices. Low temperature co-fired ceramic (LTCC) was used as the substrate. Bare die commercial LED and photodetectors were attached to the substrate and tested for functionality. Preliminary results show enhanced performance at elevated temperatures compared to a commercial optocoupler device
- …
