794,876 research outputs found

    Joint Cuts and Matching of Partitions in One Graph

    Full text link
    As two fundamental problems, graph cuts and graph matching have been investigated over decades, resulting in vast literature in these two topics respectively. However the way of jointly applying and solving graph cuts and matching receives few attention. In this paper, we first formalize the problem of simultaneously cutting a graph into two partitions i.e. graph cuts and establishing their correspondence i.e. graph matching. Then we develop an optimization algorithm by updating matching and cutting alternatively, provided with theoretical analysis. The efficacy of our algorithm is verified on both synthetic dataset and real-world images containing similar regions or structures

    A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering

    Full text link
    We formulate weighted graph clustering as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. We adapt the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008; Seldin, 2009) to derive a PAC-Bayesian generalization bound for graph clustering. The bound shows that graph clustering should optimize a trade-off between empirical data fit and the mutual information that clusters preserve on the graph nodes. A similar trade-off derived from information-theoretic considerations was already shown to produce state-of-the-art results in practice (Slonim et al., 2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate way to deal with finite sample issues. We derive a bound minimization algorithm and show that it provides good results in real-life problems and that the derived PAC-Bayesian bound is reasonably tight

    Domain Adaptation on Graphs by Learning Graph Topologies: Theoretical Analysis and an Algorithm

    Full text link
    Traditional machine learning algorithms assume that the training and test data have the same distribution, while this assumption does not necessarily hold in real applications. Domain adaptation methods take into account the deviations in the data distribution. In this work, we study the problem of domain adaptation on graphs. We consider a source graph and a target graph constructed with samples drawn from data manifolds. We study the problem of estimating the unknown class labels on the target graph using the label information on the source graph and the similarity between the two graphs. We particularly focus on a setting where the target label function is learnt such that its spectrum is similar to that of the source label function. We first propose a theoretical analysis of domain adaptation on graphs and present performance bounds that characterize the target classification error in terms of the properties of the graphs and the data manifolds. We show that the classification performance improves as the topologies of the graphs get more balanced, i.e., as the numbers of neighbors of different graph nodes become more proportionate, and weak edges with small weights are avoided. Our results also suggest that graph edges between too distant data samples should be avoided for good generalization performance. We then propose a graph domain adaptation algorithm inspired by our theoretical findings, which estimates the label functions while learning the source and target graph topologies at the same time. The joint graph learning and label estimation problem is formulated through an objective function relying on our performance bounds, which is minimized with an alternating optimization scheme. Experiments on synthetic and real data sets suggest that the proposed method outperforms baseline approaches
    corecore