7 research outputs found

    Graph Decompositions and Factorizing Permutations

    Get PDF
    A factorizing permutation of a given graph is simply a permutation of the vertices in which all decomposition sets appear to be factors. Such a concept seems to play a central role in recent papers dealing with graph decomposition. It is applied here for modular decomposition and we propose a linear algorithm that computes the whole decomposition tree when a factorizing permutation is provided. This algorithm can be seen as a common generalization of Ma and Hsu for modular decomposition of chordal graphs and Habib, Huchard and Spinrad for inheritance graphs decomposition. It also suggests many new decomposition algorithms for various notions of graph decompositions

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    Computing commons interval of K permutations, with applications to modular decomposition of graphs

    Get PDF
    International audienceWe introduce a new way to compute common intervals of K permutations based on a very simple and general notion of generators of common intervals. This formalism leads to simple and efficient algorithms to compute the set of all common intervals of K permutations, that can contain a quadratic number of intervals, as well as a linear space basis of this set of common intervals. Finally, we show how our results on permutations can be used for computing the modular decomposition of graphs in linear time

    Graph Decompositions and Factorizing Permutations

    Get PDF
    A factorizing permutation of a given graph is simply a permutation of the vertices in which all decomposition sets appear to be factors. Such a concept seems to play a central role in recent papers dealing with graph decomposition. It is applied here for modular decomposition and we propose a linear algorithm that computes the whole decomposition tree when a factorizing permutation is provided. This algorithm can be seen as a common generalization of Ma and Hsu for modular decomposition of chordal graphs and Habib, Huchard and Spinrad for inheritance graphs decomposition. It also suggests many new decomposition algorithms for various notions of graph decompositions

    Graph Decompositions and Factorizing Permutations

    No full text
    A factorizing permutation of a given undirected graph is simply a permutation of the vertices in which all decomposition sets appear to be factors. Such a concept seems to play a central role in recent papers dealing with graph decomposition. It is applied here for modular decomposition and we propose a linear algorithm that computes the whole decomposition tree when a factorizing permutation is provided. This algorithm can be seen as a common generalization of Ma and Hsu [9, 8] for modular decomposition of chordal graphs and Habib, Huchard and Spinrad [7] for inheritance graphs decomposition. It also suggests many new decomposition algorithms for various notions of graph decompositions
    corecore