3,133 research outputs found

    A low multiplicative complexity fast recursive DCT-2 algorithm

    Full text link
    A fast Discrete Cosine Transform (DCT) algorithm is introduced that can be of particular interest in image processing. The main features of the algorithm are regularity of the graph and very low arithmetic complexity. The 16-point version of the algorithm requires only 32 multiplications and 81 additions. The computational core of the algorithm consists of only 17 nontrivial multiplications, the rest 15 are scaling factors that can be compensated in the post-processing. The derivation of the algorithm is based on the algebraic signal processing theory (ASP).Comment: 4 pages, 2 figure

    Poncelet's Theorem, Paraorthogonal Polynomials and the Numerical Range of Compressed Multiplication Operators

    Get PDF
    There has been considerable recent literature connecting Poncelet's theorem to ellipses, Blaschke products and numerical ranges, summarized, for example, in the recent book [11]. We show how those results can be understood using ideas from the theory of orthogonal polynomials on the unit circle (OPUC) and, in turn, can provide new insights to the theory of OPUC.Comment: 46 pages, 4 figures; minor revisions from v1; accepted for publication in Adv. Mat

    An investigation of data compression techniques for hyperspectral core imager data

    Get PDF
    We investigate algorithms for tractable analysis of real hyperspectral image data from core samples provided by AngloGold Ashanti. In particular, we investigate feature extraction, non-linear dimension reduction using diffusion maps and wavelet approximation methods on our data

    P?=NP as minimization of degree 4 polynomial, integration or Grassmann number problem, and new graph isomorphism problem approaches

    Full text link
    While the P vs NP problem is mainly approached form the point of view of discrete mathematics, this paper proposes reformulations into the field of abstract algebra, geometry, fourier analysis and of continuous global optimization - which advanced tools might bring new perspectives and approaches for this question. The first one is equivalence of satisfaction of 3-SAT problem with the question of reaching zero of a nonnegative degree 4 multivariate polynomial (sum of squares), what could be tested from the perspective of algebra by using discriminant. It could be also approached as a continuous global optimization problem inside [0,1]n[0,1]^n, for example in physical realizations like adiabatic quantum computers. However, the number of local minima usually grows exponentially. Reducing to degree 2 polynomial plus constraints of being in {0,1}n\{0,1\}^n, we get geometric formulations as the question if plane or sphere intersects with {0,1}n\{0,1\}^n. There will be also presented some non-standard perspectives for the Subset-Sum, like through convergence of a series, or zeroing of ∫02Ο€βˆicos⁑(Ο†ki)dΟ†\int_0^{2\pi} \prod_i \cos(\varphi k_i) d\varphi fourier-type integral for some natural kik_i. The last discussed approach is using anti-commuting Grassmann numbers ΞΈi\theta_i, making (Aβ‹…diag(ΞΈi))n(A \cdot \textrm{diag}(\theta_i))^n nonzero only if AA has a Hamilton cycle. Hence, the Pβ‰ \neNP assumption implies exponential growth of matrix representation of Grassmann numbers. There will be also discussed a looking promising algebraic/geometric approach to the graph isomorphism problem -- tested to successfully distinguish strongly regular graphs with up to 29 vertices.Comment: 19 pages, 8 figure

    Optimal Sparsification for Some Binary CSPs Using Low-degree Polynomials

    Full text link
    This paper analyzes to what extent it is possible to efficiently reduce the number of clauses in NP-hard satisfiability problems, without changing the answer. Upper and lower bounds are established using the concept of kernelization. Existing results show that if NP is not contained in coNP/poly, no efficient preprocessing algorithm can reduce n-variable instances of CNF-SAT with d literals per clause, to equivalent instances with O(ndβˆ’e)O(n^{d-e}) bits for any e > 0. For the Not-All-Equal SAT problem, a compression to size O˜(ndβˆ’1)\~O(n^{d-1}) exists. We put these results in a common framework by analyzing the compressibility of binary CSPs. We characterize constraint types based on the minimum degree of multivariate polynomials whose roots correspond to the satisfying assignments, obtaining (nearly) matching upper and lower bounds in several settings. Our lower bounds show that not just the number of constraints, but also the encoding size of individual constraints plays an important role. For example, for Exact Satisfiability with unbounded clause length it is possible to efficiently reduce the number of constraints to n+1, yet no polynomial-time algorithm can reduce to an equivalent instance with O(n2βˆ’e)O(n^{2-e}) bits for any e > 0, unless NP is a subset of coNP/poly.Comment: Updated the cross-composition in lemma 18 (minor update), since the previous version did NOT satisfy requirement 4 of lemma 18 (the proof of Claim 20 was incorrect
    • …
    corecore