680,654 research outputs found
Engineering DFS-Based Graph Algorithms
Depth-first search (DFS) is the basis for many efficient graph algorithms. We
introduce general techniques for the efficient implementation of DFS-based
graph algorithms and exemplify them on three algorithms for computing strongly
connected components. The techniques lead to speed-ups by a factor of two to
three compared to the implementations provided by LEDA and BOOST.
We have obtained similar speed-ups for biconnected components algorithms. We
also compare the graph data types of LEDA and BOOST
Diameter and Treewidth in Minor-Closed Graph Families
It is known that any planar graph with diameter D has treewidth O(D), and
this fact has been used as the basis for several planar graph algorithms. We
investigate the extent to which similar relations hold in other graph families.
We show that treewidth is bounded by a function of the diameter in a
minor-closed family, if and only if some apex graph does not belong to the
family. In particular, the O(D) bound above can be extended to bounded-genus
graphs. As a consequence, we extend several approximation algorithms and exact
subgraph isomorphism algorithms from planar graphs to other graph families.Comment: 15 pages, 12 figure
On sampling nodes in a network
Random walk is an important tool in many graph mining applications including estimating graph parameters, sampling portions of the graph, and extracting dense communities. In this paper we consider the problem of sampling nodes from a large graph according to a prescribed distribution by using random walk as the basic primitive. Our goal is to obtain algorithms that make a small number of queries to the graph but output a node that is sampled according to the prescribed distribution. Focusing on the uniform distribution case, we study the query complexity of three algorithms and show a near-tight bound expressed in terms of the parameters of the graph such as average degree and the mixing time. Both theoretically and empirically, we show that some algorithms are preferable in practice than the others. We also extend our study to the problem of sampling nodes according to some polynomial function of their degrees; this has implications for designing efficient algorithms for applications such as triangle counting
Average Sensitivity of Graph Algorithms
In modern applications of graphs algorithms, where the graphs of interest are
large and dynamic, it is unrealistic to assume that an input representation
contains the full information of a graph being studied. Hence, it is desirable
to use algorithms that, even when only a (large) subgraph is available, output
solutions that are close to the solutions output when the whole graph is
available. We formalize this idea by introducing the notion of average
sensitivity of graph algorithms, which is the average earth mover's distance
between the output distributions of an algorithm on a graph and its subgraph
obtained by removing an edge, where the average is over the edges removed and
the distance between two outputs is the Hamming distance.
In this work, we initiate a systematic study of average sensitivity. After
deriving basic properties of average sensitivity such as composition, we
provide efficient approximation algorithms with low average sensitivities for
concrete graph problems, including the minimum spanning forest problem, the
global minimum cut problem, the minimum - cut problem, and the maximum
matching problem. In addition, we prove that the average sensitivity of our
global minimum cut algorithm is almost optimal, by showing a nearly matching
lower bound. We also show that every algorithm for the 2-coloring problem has
average sensitivity linear in the number of vertices. One of the main ideas
involved in designing our algorithms with low average sensitivity is the
following fact; if the presence of a vertex or an edge in the solution output
by an algorithm can be decided locally, then the algorithm has a low average
sensitivity, allowing us to reuse the analyses of known sublinear-time
algorithms and local computation algorithms (LCAs). Using this connection, we
show that every LCA for 2-coloring has linear query complexity, thereby
answering an open question.Comment: 39 pages, 1 figur
- …
