313 research outputs found

    Drawing Big Graphs using Spectral Sparsification

    Full text link
    Spectral sparsification is a general technique developed by Spielman et al. to reduce the number of edges in a graph while retaining its structural properties. We investigate the use of spectral sparsification to produce good visual representations of big graphs. We evaluate spectral sparsification approaches on real-world and synthetic graphs. We show that spectral sparsifiers are more effective than random edge sampling. Our results lead to guidelines for using spectral sparsification in big graph visualization.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Simple parallel and distributed algorithms for spectral graph sparsification

    Full text link
    We describe a simple algorithm for spectral graph sparsification, based on iterative computations of weighted spanners and uniform sampling. Leveraging the algorithms of Baswana and Sen for computing spanners, we obtain the first distributed spectral sparsification algorithm. We also obtain a parallel algorithm with improved work and time guarantees. Combining this algorithm with the parallel framework of Peng and Spielman for solving symmetric diagonally dominant linear systems, we get a parallel solver which is much closer to being practical and significantly more efficient in terms of the total work.Comment: replaces "A simple parallel and distributed algorithm for spectral sparsification". Minor change

    Optimality of the Johnson-Lindenstrauss Lemma

    Full text link
    For any integers d,n2d, n \geq 2 and 1/(min{n,d})0.4999<ε<11/({\min\{n,d\}})^{0.4999} < \varepsilon<1, we show the existence of a set of nn vectors XRdX\subset \mathbb{R}^d such that any embedding f:XRmf:X\rightarrow \mathbb{R}^m satisfying x,yX, (1ε)xy22f(x)f(y)22(1+ε)xy22 \forall x,y\in X,\ (1-\varepsilon)\|x-y\|_2^2\le \|f(x)-f(y)\|_2^2 \le (1+\varepsilon)\|x-y\|_2^2 must have m=Ω(ε2lgn). m = \Omega(\varepsilon^{-2} \lg n). This lower bound matches the upper bound given by the Johnson-Lindenstrauss lemma [JL84]. Furthermore, our lower bound holds for nearly the full range of ε\varepsilon of interest, since there is always an isometric embedding into dimension min{d,n}\min\{d, n\} (either the identity map, or projection onto span(X)\mathop{span}(X)). Previously such a lower bound was only known to hold against linear maps ff, and not for such a wide range of parameters ε,n,d\varepsilon, n, d [LN16]. The best previously known lower bound for general ff was m=Ω(ε2lgn/lg(1/ε))m = \Omega(\varepsilon^{-2}\lg n/\lg(1/\varepsilon)) [Wel74, Lev83, Alo03], which is suboptimal for any ε=o(1)\varepsilon = o(1).Comment: v2: simplified proof, also added reference to Lev8
    corecore